中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
热门
基于粒子群优化的测试数据生成及其实证分析

文献类型:期刊论文

作者毛澄映 ; 喻新欣 ; 薛云志
刊名计算机研究与发展
出版日期2014
卷号51期号:4页码:824-837
关键词结构性测试 测试数据生成 分支覆盖 搜索算法 粒子群优化 structural testing test data generation branch coverage searching algorithm particle swarm optimization (PSO)
ISSN号10001239
其他题名Algorithm design and empirical analysis for particle swarm optimization-based test data generation
通讯作者Mao, C.(maochy@yeah.net)
中文摘要运用元启发式搜索进行结构性测试数据生成已经被证实是一种有效的方法.在讨论基于搜索的测试数据生成基本框架的基础上,以分支覆盖作为测试覆盖准则,给出了基于粒子群优化(particle swarm optimization,PSO)的测试数据生成算法,并通过分析分支谓词的结构特征提出了一种新的适应函数构造形式.在此基础上,针对一些公开的程序集开展对比性实验分析,证实粒子群优化算法在平均覆盖率、全覆盖成功率、平均收敛代数和搜索时间4项指标上均要优于遗传算法和模拟退火算法.同时,编程实现了4种典型的PSO变体算法并进行测试数据生成效果的实证分析,结果表明:基本PSO是解决测试数据生成问题的首选算法,而综合学习式PSO算法的表现则相对较差.
英文摘要How to generate a test dataset with high coverage and strong fault-revealing ability is a difficult problem, especially for software structural testing. Recently, meta-heuristic search has been confirmed to be an effective way to generate structural test data. In the paper, a swarm intelligence-based method is proposed to handle this problem. At first, the basic framework for search-based test data generation is discussed. Then, with regard to branch coverage criterion, the algorithm for generating test data based on particle swarm optimization (PSO) is proposed. Meanwhile, a new way to construct fitness function is defined according to the structure analysis for branch predicates in program under test. Subsequently, ten open published programs are used to perform experimental evaluation. The experimental results show that PSO outperforms genetic algorithm (GA) and simulated annealing (SA) in all four metrics, i.e., average coverage, success rate, average convergence generation and average time. In addition, other four PSO variant algorithms are also introduced and implemented to conduct comparison analysis with the basic PSO. The results indicate that the basic PSO is the most suitable algorithm for test data generation problem. On the contrary, comprehensive learning PSO (CLPSO) exhibits the worst performance in all variant algorithms.
收录类别EI ; CSCD
语种中文
CSCD记录号CSCD:5098233
公开日期2014-12-16
源URL[http://ir.iscas.ac.cn/handle/311060/16759]  
专题软件研究所_软件所图书馆_期刊论文
推荐引用方式
GB/T 7714
毛澄映,喻新欣,薛云志. 基于粒子群优化的测试数据生成及其实证分析[J]. 计算机研究与发展,2014,51(4):824-837.
APA 毛澄映,喻新欣,&薛云志.(2014).基于粒子群优化的测试数据生成及其实证分析.计算机研究与发展,51(4),824-837.
MLA 毛澄映,et al."基于粒子群优化的测试数据生成及其实证分析".计算机研究与发展 51.4(2014):824-837.

入库方式: OAI收割

来源:软件研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。