热门
on lin-bose problem
文献类型:期刊论文
作者 | Wang MS ; Feng Dengguo |
刊名 | Linear Algebra and Its Applications
![]() |
出版日期 | 2004 |
卷号 | 390期号:1-3 |
关键词 | Polynomial ring Multivariate polynomial matrix Lin–Bose problem Matrix factorization Multidimensional systems |
中文摘要 | This paper study generalized Serre problem proposed by Lin and Bose in multidimensional system theory context [Multidimens. Systems and Signal Process. 10 (1999) 379; Linear Algebra Appl. 338 (2001) 125]. This problem is stated as follows. Let F ∈ Al×m be a full row rank matrix, and d be the greatest common divisor of all the l × l minors of F. Assume that the reduced minors of F generate the unit ideal, where A = K[x 1,...,xn] is the polynomial ring in n variables x 1,...,xn over any coefficient field K. Then there exist matrices G ∈ Al×l and F1 ∈ A l×m such that F = GF1 with det G = d and F 1 is a ZLP matrix. We provide an elementary proof to this problem, and treat non-full rank case. |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:000223949700018 |
公开日期 | 2010-03-11 |
源URL | [http://124.16.136.157/handle/311060/767] ![]() |
专题 | 软件研究所_信息安全国家重点实验室_期刊论文 |
推荐引用方式 GB/T 7714 | Wang MS,Feng Dengguo. on lin-bose problem[J]. Linear Algebra and Its Applications,2004,390(1-3). |
APA | Wang MS,&Feng Dengguo.(2004).on lin-bose problem.Linear Algebra and Its Applications,390(1-3). |
MLA | Wang MS,et al."on lin-bose problem".Linear Algebra and Its Applications 390.1-3(2004). |
入库方式: OAI收割
来源:软件研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。