中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
基于向量空间模型的有导词义消歧

文献类型:期刊论文

作者鲁松 ; 白硕 ; 黄雄 ; 张健
刊名计算机研究与发展
出版日期2001
卷号38期号:6页码:662-667
关键词词义消歧 向量空间模型 义项矩阵 上下文位置权重 有导机器学习
其他题名supervised word sense disambiguation based on vector space model
中文摘要词义消歧一直是自然语言理解中的一个关键问题,该问题解决的好坏直接关系到自然语言处理中诸多应用问题的效果优劣.由于自然语言知识表示的困难,在手工规则的词义消歧难以达到理想效果的情况下,各种有导机器学习方法被应用于词义消歧任务中.借鉴前人的成果引入信息检索领域中向量空间模型文档词语权重计算技术来解决多义词义项的知识表示问题,并提出了上下文位置权重的计算方法,给出了一种基于向量空间模型的词义消歧有导机器学习方法.该方法将多义词的义项和上下文分别映射到向量空间中,通过计算多义词上下文向量与义项向量的距离,采用k-NN(k=1)方法来确定上下文向量的义项分类.在9个汉语高频多义词的开放和封闭测试中均取得了突出的成绩(封闭测试平均正确率为96.31% ,开放测试平均正确率为92.98%),验证了该方法的有效性.
语种中文
公开日期2010-08-11
源URL[http://124.16.136.157/handle/311060/3158]  
专题软件研究所_计算机科学国家重点实验室 _期刊论文
推荐引用方式
GB/T 7714
鲁松,白硕,黄雄,等. 基于向量空间模型的有导词义消歧[J]. 计算机研究与发展,2001,38(6):662-667.
APA 鲁松,白硕,黄雄,&张健.(2001).基于向量空间模型的有导词义消歧.计算机研究与发展,38(6),662-667.
MLA 鲁松,et al."基于向量空间模型的有导词义消歧".计算机研究与发展 38.6(2001):662-667.

入库方式: OAI收割

来源:软件研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。