optimal error estimates in jacobi-weighted sobolev spaces for polynomial approximations on the triangle
文献类型:期刊论文
作者 | Li Huiyuan ; Shen Jie |
刊名 | MATHEMATICS OF COMPUTATION
![]() |
出版日期 | 2010 |
卷号 | 79期号:271页码:1621-1646 |
关键词 | Orthogonal polynomials Koornwinder polynomials error estimate spectral method |
ISSN号 | 0025-5718 |
学科主题 | Mathematics ; Applied |
收录类别 | SCI |
公开日期 | 2011-05-23 |
附注 | Spectral approximations on the triangle by orthogonal polynomials are studied in this paper. Optimal error estimates in weighted semi-norms for both the L-2- and 11(0)(1)-orthogonal polynomial projections are established by using the generalized Koornwinder polynomials and the properties of the Sturm-Liouville operator on the triangle. These results are then applied to derive error estimates for the spectral-Galerkin method for second- and fourth-order equations on the triangle. The generalized Koornwinder polynomials and approximation results developed in this paper will be useful for many other applications involving spectral and spectral-element approximations in triangular domains. |
源URL | [http://124.16.136.157/handle/311060/9764] ![]() |
专题 | 软件研究所_计算机科学国家重点实验室 _期刊论文 |
推荐引用方式 GB/T 7714 | Li Huiyuan,Shen Jie. optimal error estimates in jacobi-weighted sobolev spaces for polynomial approximations on the triangle[J]. MATHEMATICS OF COMPUTATION,2010,79(271):1621-1646. |
APA | Li Huiyuan,&Shen Jie.(2010).optimal error estimates in jacobi-weighted sobolev spaces for polynomial approximations on the triangle.MATHEMATICS OF COMPUTATION,79(271),1621-1646. |
MLA | Li Huiyuan,et al."optimal error estimates in jacobi-weighted sobolev spaces for polynomial approximations on the triangle".MATHEMATICS OF COMPUTATION 79.271(2010):1621-1646. |
入库方式: OAI收割
来源:软件研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。