中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
optimal error estimates in jacobi-weighted sobolev spaces for polynomial approximations on the triangle

文献类型:期刊论文

作者Li Huiyuan ; Shen Jie
刊名MATHEMATICS OF COMPUTATION
出版日期2010
卷号79期号:271页码:1621-1646
关键词Orthogonal polynomials Koornwinder polynomials error estimate spectral method
ISSN号0025-5718
学科主题Mathematics ; Applied
收录类别SCI
公开日期2011-05-23
附注Spectral approximations on the triangle by orthogonal polynomials are studied in this paper. Optimal error estimates in weighted semi-norms for both the L-2- and 11(0)(1)-orthogonal polynomial projections are established by using the generalized Koornwinder polynomials and the properties of the Sturm-Liouville operator on the triangle. These results are then applied to derive error estimates for the spectral-Galerkin method for second- and fourth-order equations on the triangle. The generalized Koornwinder polynomials and approximation results developed in this paper will be useful for many other applications involving spectral and spectral-element approximations in triangular domains.
源URL[http://124.16.136.157/handle/311060/9764]  
专题软件研究所_计算机科学国家重点实验室 _期刊论文
推荐引用方式
GB/T 7714
Li Huiyuan,Shen Jie. optimal error estimates in jacobi-weighted sobolev spaces for polynomial approximations on the triangle[J]. MATHEMATICS OF COMPUTATION,2010,79(271):1621-1646.
APA Li Huiyuan,&Shen Jie.(2010).optimal error estimates in jacobi-weighted sobolev spaces for polynomial approximations on the triangle.MATHEMATICS OF COMPUTATION,79(271),1621-1646.
MLA Li Huiyuan,et al."optimal error estimates in jacobi-weighted sobolev spaces for polynomial approximations on the triangle".MATHEMATICS OF COMPUTATION 79.271(2010):1621-1646.

入库方式: OAI收割

来源:软件研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。