中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
maximum margin transfer learning

文献类型:会议论文

作者Su Bai ; Shen Yi-Dong
出版日期2009
会议名称World Summit on Genetic and Evolutionary Computation (GEC 09)
会议日期JUN 12-14,
会议地点Shanghai, PEOPLES R CHINA
关键词Labels Semiconducting germanium compounds
英文摘要To achieve good generalization in supervised learning, the training and testing examples are usually required to be drawn from the same source distribution. However, in many cases, this identical distribution assumption might be violated when a task from one new domain(target domain) comes, while there are only labeled data from a similar old domain(auxiliary domain). Labeling the new data can be costly and it would also be a waste to throw away all the old data. In this paper, we present a discriminative approach that utilizes the intrinsic geometry of input patterns revealed by unlabeled data, points and derive a maximum-margin formulation of unsupervised transfer learning. Two alternative solutions are proposed to solve the problem. Experimental results on many real data. sets demonstrate the effectiveness and the potential of the proposed methods.
会议主办者ACM SIGEVO
会议录2009 World Summit on Genetic and Evolutionary Computation, 2009 GEC Summit - Proceedings of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation, GEC09
会议录出版者WORLD SUMMIT ON GENETIC AND EVOLUTIONARY COMPUTATION (GEC 09)
会议录出版地1515 BROADWAY, NEW YORK, NY 10036-9998 USA
ISBN号978-1-60558-326-6
源URL[http://124.16.136.157/handle/311060/8198]  
专题软件研究所_计算机科学国家重点实验室 _会议论文
推荐引用方式
GB/T 7714
Su Bai,Shen Yi-Dong. maximum margin transfer learning[C]. 见:World Summit on Genetic and Evolutionary Computation (GEC 09). Shanghai, PEOPLES R CHINA. JUN 12-14,.

入库方式: OAI收割

来源:软件研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。