data prediction in manufacturing: an improved approach using least squares support vector machines
文献类型:会议论文
作者 | Liao Zaifei ; Yang Tian ; Lu Xinjie ; Wang Hongan |
出版日期 | 2009 |
会议名称 | 2009 1st International Workshop on Database Technology and Applications, DBTA 2009 |
会议日期 | April 25, |
会议地点 | Wuhan, Hubei, China |
关键词 | Gears Manufacture Multilayer neural networks |
英文摘要 | Support vector machine (SVM) is a set of related supervised learning methods used for classification and regression based on statistical learning theory. In this paper, we present a least squares support vector machines (LSSVM) regression method based on relative error for manufacturing industries to estimate the true value of imprecise measured data during production logistics process. Our method has already been successfully applied in Manufacturing Execution System (MES) of some petrochemical enterprises in China. © 2009 IEEE. |
收录类别 | EI |
会议主办者 | Wuhan University of Science and Technology; Huazhong University of Science and Technology; Huazhong Normal University; Harbin Institute of Technology; Wuhan University; I and M/CI Joint Chapter of IEEE Ukraine Section |
会议录 | Proceedings - 2009 1st International Workshop on Database Technology and Applications, DBTA 2009
![]() |
会议录出版地 | United States |
ISBN号 | 9780769536040 |
源URL | [http://124.16.136.157/handle/311060/8412] ![]() |
专题 | 软件研究所_人机交互技术与智能信息处理实验室_会议论文 |
推荐引用方式 GB/T 7714 | Liao Zaifei,Yang Tian,Lu Xinjie,et al. data prediction in manufacturing: an improved approach using least squares support vector machines[C]. 见:2009 1st International Workshop on Database Technology and Applications, DBTA 2009. Wuhan, Hubei, China. April 25,. |
入库方式: OAI收割
来源:软件研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。