中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
data prediction in manufacturing: an improved approach using least squares support vector machines

文献类型:会议论文

作者Liao Zaifei ; Yang Tian ; Lu Xinjie ; Wang Hongan
出版日期2009
会议名称2009 1st International Workshop on Database Technology and Applications, DBTA 2009
会议日期April 25,
会议地点Wuhan, Hubei, China
关键词Gears Manufacture Multilayer neural networks
英文摘要Support vector machine (SVM) is a set of related supervised learning methods used for classification and regression based on statistical learning theory. In this paper, we present a least squares support vector machines (LSSVM) regression method based on relative error for manufacturing industries to estimate the true value of imprecise measured data during production logistics process. Our method has already been successfully applied in Manufacturing Execution System (MES) of some petrochemical enterprises in China. © 2009 IEEE.
收录类别EI
会议主办者Wuhan University of Science and Technology; Huazhong University of Science and Technology; Huazhong Normal University; Harbin Institute of Technology; Wuhan University; I and M/CI Joint Chapter of IEEE Ukraine Section
会议录Proceedings - 2009 1st International Workshop on Database Technology and Applications, DBTA 2009
会议录出版地United States
ISBN号9780769536040
源URL[http://124.16.136.157/handle/311060/8412]  
专题软件研究所_人机交互技术与智能信息处理实验室_会议论文
推荐引用方式
GB/T 7714
Liao Zaifei,Yang Tian,Lu Xinjie,et al. data prediction in manufacturing: an improved approach using least squares support vector machines[C]. 见:2009 1st International Workshop on Database Technology and Applications, DBTA 2009. Wuhan, Hubei, China. April 25,.

入库方式: OAI收割

来源:软件研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。