中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
missing data imputation: a fuzzy k-means clustering algorithm over sliding window

文献类型:会议论文

作者Liao Zaifei ; Lu Xinjie ; Yang Tian ; Wang Hongan
出版日期2009
会议名称6th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2009
会议日期August 14,
会议地点Tianjin, China
关键词Cluster analysis
页码133-137
英文摘要Fuzzy set theory is motivated by the practical needs to manage and process uncertainty inherent in real world problem solving. It is useful in applications to data mining, conflict analysis, and so on. Although ignored by much of the related work, the high rate and unbounded nature of data make the sliding window indispensable. In this paper, we present a fuzzy kmeans clustering algorithm over sliding window for the missing value imputation of incomplete data to improve the data quality. The experiments show that our missing data imputation algorithm tends to be more tolerant of imprecision and uncertainty and can lead to a better performance with accuracy guarantees. © 2009 IEEE.
收录类别其他
会议主办者Tianjin University of Technology
会议录6th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2009
会议录出版者United States
会议录出版地United States
语种英语
ISBN号9780769537351
源URL[http://124.16.136.157/handle/311060/8482]  
专题软件研究所_人机交互技术与智能信息处理实验室_会议论文
推荐引用方式
GB/T 7714
Liao Zaifei,Lu Xinjie,Yang Tian,et al. missing data imputation: a fuzzy k-means clustering algorithm over sliding window[C]. 见:6th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2009. Tianjin, China. August 14,.

入库方式: OAI收割

来源:软件研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。