中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
incremental outlier detection in data streams using local correlation integral

文献类型:会议论文

作者Lu Xinjie ; Yang Tian ; Liao Zaifei ; Elahi Manzoor ; Liu Wei ; Wang Hongan
出版日期2009
会议名称24th Annual ACM Symposium on Applied Computing, SAC 2009
会议日期37323
会议地点Honolulu, HI, United states
关键词Computer science Data communication systems
英文摘要In this paper, an incremental outlier detection technique capable of dealing with a large amount of data is presented and evaluated in the context of intrusion detection. The proposed method is based on the LOcal Correlation Integral (LOCI for short). The detection technique consists of two parts. The first part named insertion receives the sequence of input point and updates Multi-granularity DEviation Factor (MDEF) of the point at intervals. The second part named deletion deletes one or a batch of points. This technique is able to process streaming data in a single scan. Moreover, the number of updates in the incremental LOCI algorithm per insertion/deletion of a single data record does not depend on the total number of data records. Experimental results with real life data sets show that the technique is capable of dealing with data streams, successfully detecting outlier. Copyright 2009 ACM.
会议主办者ACM SIGAPP
会议录Proceedings of the ACM Symposium on Applied Computing
会议录出版地United States
ISBN号9781605581668
源URL[http://124.16.136.157/handle/311060/8492]  
专题软件研究所_人机交互技术与智能信息处理实验室_会议论文
推荐引用方式
GB/T 7714
Lu Xinjie,Yang Tian,Liao Zaifei,et al. incremental outlier detection in data streams using local correlation integral[C]. 见:24th Annual ACM Symposium on Applied Computing, SAC 2009. Honolulu, HI, United states. 37323.

入库方式: OAI收割

来源:软件研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。