incremental outlier detection in data streams using local correlation integral
文献类型:会议论文
作者 | Lu Xinjie ; Yang Tian ; Liao Zaifei ; Elahi Manzoor ; Liu Wei ; Wang Hongan |
出版日期 | 2009 |
会议名称 | 24th Annual ACM Symposium on Applied Computing, SAC 2009 |
会议日期 | 37323 |
会议地点 | Honolulu, HI, United states |
关键词 | Computer science Data communication systems |
英文摘要 | In this paper, an incremental outlier detection technique capable of dealing with a large amount of data is presented and evaluated in the context of intrusion detection. The proposed method is based on the LOcal Correlation Integral (LOCI for short). The detection technique consists of two parts. The first part named insertion receives the sequence of input point and updates Multi-granularity DEviation Factor (MDEF) of the point at intervals. The second part named deletion deletes one or a batch of points. This technique is able to process streaming data in a single scan. Moreover, the number of updates in the incremental LOCI algorithm per insertion/deletion of a single data record does not depend on the total number of data records. Experimental results with real life data sets show that the technique is capable of dealing with data streams, successfully detecting outlier. Copyright 2009 ACM. |
会议主办者 | ACM SIGAPP |
会议录 | Proceedings of the ACM Symposium on Applied Computing
![]() |
会议录出版地 | United States |
ISBN号 | 9781605581668 |
源URL | [http://124.16.136.157/handle/311060/8492] ![]() |
专题 | 软件研究所_人机交互技术与智能信息处理实验室_会议论文 |
推荐引用方式 GB/T 7714 | Lu Xinjie,Yang Tian,Liao Zaifei,et al. incremental outlier detection in data streams using local correlation integral[C]. 见:24th Annual ACM Symposium on Applied Computing, SAC 2009. Honolulu, HI, United states. 37323. |
入库方式: OAI收割
来源:软件研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。