中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
There exists a maximal 3-c.e. enumeration degree

文献类型:期刊论文

作者Cooper SB ; Li AS ; Sorbi A ; Yang Ye
刊名Israel Journal of Mathematics
出版日期2003
卷号137期号:*页码:285-320
关键词DENSITY PROBLEM UNSOLVABILITY
通讯作者Cooper ; SB (通讯作者) ; Univ Leeds ; Sch Math ; Dept Pure Math ; Leeds LS2 9JT ; W Yorkshire England
收录类别SCI
公开日期2010-08-23
附注We construct an incomplete 3-c.e. enumeration degree which is maximal among the n-c.e. enumeration degrees for every n with 3 less than or equal to n less than or equal to omega. Consequently the n-c.e. enumeration degrees are not dense for any such n. We show also that no low n-c.e. e-degree can be maximal among the n-c.e. e-degrees; for 2 less than or equal to n less than or equal to omega.
源URL[http://124.16.136.157/handle/311060/3816]  
专题软件研究所_基础软件国家工程研究中心_期刊论文
推荐引用方式
GB/T 7714
Cooper SB,Li AS,Sorbi A,et al. There exists a maximal 3-c.e. enumeration degree[J]. Israel Journal of Mathematics,2003,137(*):285-320.
APA Cooper SB,Li AS,Sorbi A,&Yang Ye.(2003).There exists a maximal 3-c.e. enumeration degree.Israel Journal of Mathematics,137(*),285-320.
MLA Cooper SB,et al."There exists a maximal 3-c.e. enumeration degree".Israel Journal of Mathematics 137.*(2003):285-320.

入库方式: OAI收割

来源:软件研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。