There exists a maximal 3-c.e. enumeration degree
文献类型:期刊论文
作者 | Cooper SB ; Li AS ; Sorbi A ; Yang Ye |
刊名 | Israel Journal of Mathematics
![]() |
出版日期 | 2003 |
卷号 | 137期号:*页码:285-320 |
关键词 | DENSITY PROBLEM UNSOLVABILITY |
通讯作者 | Cooper ; SB (通讯作者) ; Univ Leeds ; Sch Math ; Dept Pure Math ; Leeds LS2 9JT ; W Yorkshire England |
收录类别 | SCI |
公开日期 | 2010-08-23 |
附注 | We construct an incomplete 3-c.e. enumeration degree which is maximal among the n-c.e. enumeration degrees for every n with 3 less than or equal to n less than or equal to omega. Consequently the n-c.e. enumeration degrees are not dense for any such n. We show also that no low n-c.e. e-degree can be maximal among the n-c.e. e-degrees; for 2 less than or equal to n less than or equal to omega. |
源URL | [http://124.16.136.157/handle/311060/3816] ![]() |
专题 | 软件研究所_基础软件国家工程研究中心_期刊论文 |
推荐引用方式 GB/T 7714 | Cooper SB,Li AS,Sorbi A,et al. There exists a maximal 3-c.e. enumeration degree[J]. Israel Journal of Mathematics,2003,137(*):285-320. |
APA | Cooper SB,Li AS,Sorbi A,&Yang Ye.(2003).There exists a maximal 3-c.e. enumeration degree.Israel Journal of Mathematics,137(*),285-320. |
MLA | Cooper SB,et al."There exists a maximal 3-c.e. enumeration degree".Israel Journal of Mathematics 137.*(2003):285-320. |
入库方式: OAI收割
来源:软件研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。