中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Bounded perturbation resilience of extragradient-type methods and their applications

文献类型:期刊论文

作者Dong,Q-L1; Gibali,A2; Jiang,D1; Tang,Y3
刊名Journal of Inequalities and Applications
出版日期2017-11-10
卷号2017期号:1
关键词inertial-type method bounded perturbation resilience extragradient method subgradient extragradient method variational inequality 49J35 58E35 65K15 90C47
ISSN号1029-242X
DOI10.1186/s13660-017-1555-0
英文摘要AbstractIn this paper we study the bounded perturbation resilience of the extragradient and the subgradient extragradient methods for solving a variational inequality (VI) problem in real Hilbert spaces. This is an important property of algorithms which guarantees the convergence of the scheme under summable errors, meaning that an inexact version of the methods can also be considered. Moreover, once an algorithm is proved to be bounded perturbation resilience, superiorization can be used, and this allows flexibility in choosing the bounded perturbations in order to obtain a superior solution, as well explained in the paper. We also discuss some inertial extragradient methods. Under mild and standard assumptions of monotonicity and Lipschitz continuity of the VI’s associated mapping, convergence of the perturbed extragradient and subgradient extragradient methods is proved. In addition we show that the perturbed algorithms converge at the rate of O(1/t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(1/t)$\end{document}. Numerical illustrations are given to demonstrate the performances of the algorithms.
语种英语
WOS记录号BMC:10.1186/S13660-017-1555-0
出版者Springer International Publishing
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/395]  
专题中国科学院数学与系统科学研究院
通讯作者Gibali,A
作者单位1.
2.
3.
推荐引用方式
GB/T 7714
Dong,Q-L,Gibali,A,Jiang,D,et al. Bounded perturbation resilience of extragradient-type methods and their applications[J]. Journal of Inequalities and Applications,2017,2017(1).
APA Dong,Q-L,Gibali,A,Jiang,D,&Tang,Y.(2017).Bounded perturbation resilience of extragradient-type methods and their applications.Journal of Inequalities and Applications,2017(1).
MLA Dong,Q-L,et al."Bounded perturbation resilience of extragradient-type methods and their applications".Journal of Inequalities and Applications 2017.1(2017).

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。