The inviscid limit of the derivative complex Ginzburg-Landau equation
文献类型:期刊论文
作者 | Wang, BX; Wang, YD![]() |
刊名 | JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES
![]() |
出版日期 | 2004-04-01 |
卷号 | 83期号:4页码:477-502 |
关键词 | derivative complex Ginzburg-Landau equation derivative nonlinear Schrodinger equation inviscid limit |
ISSN号 | 0021-7824 |
DOI | 10.1016/j.matpur.2003.11.002 |
英文摘要 | We show that the solutions of the derivative complex Ginzburg-Landau equation u(t)-(epsilon+i) x u(xx)+(a+i)g(\u\(2))u+(alpha+ibeta)(\u\(2)u)x=0 converge to the solution of the derivative nonlinear Schrodinger equation u(t)- iu(xx)+ig(\u\(2))u+alpha(\u\(2)u)x=0 if the real parameters E, a and tend to 0. Moreover, an optimal convergence rate is also given. (C) 2003 Elsevier SAS. All rights reserved. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000220833200002 |
出版者 | GAUTHIER-VILLARS/EDITIONS ELSEVIER |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/551] ![]() |
专题 | 数学所 |
通讯作者 | Wang, BX |
作者单位 | 1.Peking Univ, Dept Math, Beijing 100871, Peoples R China 2.Chinese Acad Sci, Inst Math, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, BX,Wang, YD. The inviscid limit of the derivative complex Ginzburg-Landau equation[J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES,2004,83(4):477-502. |
APA | Wang, BX,&Wang, YD.(2004).The inviscid limit of the derivative complex Ginzburg-Landau equation.JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES,83(4),477-502. |
MLA | Wang, BX,et al."The inviscid limit of the derivative complex Ginzburg-Landau equation".JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES 83.4(2004):477-502. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。