中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
The inviscid limit of the derivative complex Ginzburg-Landau equation

文献类型:期刊论文

作者Wang, BX; Wang, YD
刊名JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES
出版日期2004-04-01
卷号83期号:4页码:477-502
关键词derivative complex Ginzburg-Landau equation derivative nonlinear Schrodinger equation inviscid limit
ISSN号0021-7824
DOI10.1016/j.matpur.2003.11.002
英文摘要We show that the solutions of the derivative complex Ginzburg-Landau equation u(t)-(epsilon+i) x u(xx)+(a+i)g(\u\(2))u+(alpha+ibeta)(\u\(2)u)x=0 converge to the solution of the derivative nonlinear Schrodinger equation u(t)- iu(xx)+ig(\u\(2))u+alpha(\u\(2)u)x=0 if the real parameters E, a and tend to 0. Moreover, an optimal convergence rate is also given. (C) 2003 Elsevier SAS. All rights reserved.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000220833200002
出版者GAUTHIER-VILLARS/EDITIONS ELSEVIER
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/551]  
专题数学所
通讯作者Wang, BX
作者单位1.Peking Univ, Dept Math, Beijing 100871, Peoples R China
2.Chinese Acad Sci, Inst Math, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Wang, BX,Wang, YD. The inviscid limit of the derivative complex Ginzburg-Landau equation[J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES,2004,83(4):477-502.
APA Wang, BX,&Wang, YD.(2004).The inviscid limit of the derivative complex Ginzburg-Landau equation.JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES,83(4),477-502.
MLA Wang, BX,et al."The inviscid limit of the derivative complex Ginzburg-Landau equation".JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES 83.4(2004):477-502.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。