中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Multi-component generalizations of four integrable differential-difference equations: Soliton solutions and bilinear Backlund transformations

文献类型:期刊论文

作者Zhao, JX; Hu, XB; Hirota, R
刊名JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
出版日期2004-12-01
卷号73期号:12页码:3275-3284
关键词multi-component gereralization phaffian soliton solution bilinear Backlund transformation
ISSN号0031-9015
DOI10.1143/JPSJ.73.3275
英文摘要Bilinear approach is applied to derive integrable multi-component generalizations of the so-called 1 + 1 dimensional special Toda lattice, the Volterra lattice, a simple differential-difference equation found by Adler, Moser, Weiss, Veselov and Shabat and another integrable lattice reduced from the discrete BKP equation. Their soliton solutions expressed by pfaffians and the corresponding bilinear Backlund transformations are obtained.
WOS研究方向Physics
语种英语
WOS记录号WOS:000225913500015
出版者PHYSICAL SOC JAPAN
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/656]  
专题计算数学与科学工程计算研究所
通讯作者Zhao, JX
作者单位1.Acad Sinica, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
2.Waseda Univ, Tokyo 160, Japan
3.Chinese Acad Sci, Grad Sch, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhao, JX,Hu, XB,Hirota, R. Multi-component generalizations of four integrable differential-difference equations: Soliton solutions and bilinear Backlund transformations[J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN,2004,73(12):3275-3284.
APA Zhao, JX,Hu, XB,&Hirota, R.(2004).Multi-component generalizations of four integrable differential-difference equations: Soliton solutions and bilinear Backlund transformations.JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN,73(12),3275-3284.
MLA Zhao, JX,et al."Multi-component generalizations of four integrable differential-difference equations: Soliton solutions and bilinear Backlund transformations".JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN 73.12(2004):3275-3284.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。