Multi-component generalizations of four integrable differential-difference equations: Soliton solutions and bilinear Backlund transformations
文献类型:期刊论文
作者 | Zhao, JX; Hu, XB![]() |
刊名 | JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
![]() |
出版日期 | 2004-12-01 |
卷号 | 73期号:12页码:3275-3284 |
关键词 | multi-component gereralization phaffian soliton solution bilinear Backlund transformation |
ISSN号 | 0031-9015 |
DOI | 10.1143/JPSJ.73.3275 |
英文摘要 | Bilinear approach is applied to derive integrable multi-component generalizations of the so-called 1 + 1 dimensional special Toda lattice, the Volterra lattice, a simple differential-difference equation found by Adler, Moser, Weiss, Veselov and Shabat and another integrable lattice reduced from the discrete BKP equation. Their soliton solutions expressed by pfaffians and the corresponding bilinear Backlund transformations are obtained. |
WOS研究方向 | Physics |
语种 | 英语 |
WOS记录号 | WOS:000225913500015 |
出版者 | PHYSICAL SOC JAPAN |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/656] ![]() |
专题 | 计算数学与科学工程计算研究所 |
通讯作者 | Zhao, JX |
作者单位 | 1.Acad Sinica, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China 2.Waseda Univ, Tokyo 160, Japan 3.Chinese Acad Sci, Grad Sch, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Zhao, JX,Hu, XB,Hirota, R. Multi-component generalizations of four integrable differential-difference equations: Soliton solutions and bilinear Backlund transformations[J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN,2004,73(12):3275-3284. |
APA | Zhao, JX,Hu, XB,&Hirota, R.(2004).Multi-component generalizations of four integrable differential-difference equations: Soliton solutions and bilinear Backlund transformations.JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN,73(12),3275-3284. |
MLA | Zhao, JX,et al."Multi-component generalizations of four integrable differential-difference equations: Soliton solutions and bilinear Backlund transformations".JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN 73.12(2004):3275-3284. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。