Dissipativity of multistep Runge-Kutta methods for dynamical systems with delays
文献类型:期刊论文
作者 | Huang, CM; Chang, QS |
刊名 | MATHEMATICAL AND COMPUTER MODELLING
![]() |
出版日期 | 2004-12-01 |
卷号 | 40期号:11-12页码:1285-1296 |
关键词 | dynamical systems delays multistep Runge-Kutta methods linear multistep methods dissipativity |
ISSN号 | 0895-7177 |
DOI | 10.1016/j.mcm.2005.01.019 |
英文摘要 | This paper is concerned with the numerical solution of dissipative initial value problems with delays by multistep Runge-Kutta methods. We investigate the dissipativity properties of (k, l)-algebraically stable multistep Runge-Kutta methods with constrained grid and linear interpolation procedure. In particular, it is proved that an algebraically stable, irreducible multistep Runge-Kutta method is dissipative for finite-dimensional dynamical systems with delays, which extends and unifies some extant results. In addition, we obtain dissipativity results of A-stable linear multistep methods by using the relationship between one-leg methods and linear multistep methods. (C) 2005 Elsevier Ltd. All rights reserved. |
WOS研究方向 | Computer Science ; Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000227418700011 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/671] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Huang, CM |
作者单位 | 1.Huazhong Univ Sci & Technol, Dept Math, Wuhan 430074, Peoples R China 2.Chinese Acad Sci, Inst Appl Math, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Huang, CM,Chang, QS. Dissipativity of multistep Runge-Kutta methods for dynamical systems with delays[J]. MATHEMATICAL AND COMPUTER MODELLING,2004,40(11-12):1285-1296. |
APA | Huang, CM,&Chang, QS.(2004).Dissipativity of multistep Runge-Kutta methods for dynamical systems with delays.MATHEMATICAL AND COMPUTER MODELLING,40(11-12),1285-1296. |
MLA | Huang, CM,et al."Dissipativity of multistep Runge-Kutta methods for dynamical systems with delays".MATHEMATICAL AND COMPUTER MODELLING 40.11-12(2004):1285-1296. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。