Empirical likelihood-based dimension reduction inference for linear error-in-responses models with validation study
文献类型:期刊论文
作者 | Wang, QH![]() |
刊名 | SCIENCE IN CHINA SERIES A-MATHEMATICS
![]() |
出版日期 | 2004-12-01 |
卷号 | 47期号:6页码:921-939 |
关键词 | confidence intervals error-in-response validation data |
ISSN号 | 1006-9283 |
DOI | 10.1360/03ys0148 |
英文摘要 | In this paper, linear errors-in-response models are considered in the presence of validation data on the responses. A serniparametric dimension reduction technique is employed to define an estimator of beta with asymptotic normality, the estimated empirical loglikelihoods and the adjusted empirical loglikelihoods for the vector of regression coefficients and linear combinations of the regression coefficients, respectively. The estimated empirical log-likelihoods are shown to be asymptotically distributed as weighted sums of independent X-1(2) and the adjusted empirical loglikelihoods are proved to be asymptotically distributed as standard chi-squares, respectively. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000227041700012 |
出版者 | SCIENCE CHINA PRESS |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/740] ![]() |
专题 | 应用数学研究所 |
通讯作者 | Wang, QH |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China 2.Heilongjiang Univ, Harbin 150080, Peoples R China 3.Humboldt Univ, Ctr Appl Stat & Econ, D-10178 Berlin, Germany |
推荐引用方式 GB/T 7714 | Wang, QH,Wolfgang, H. Empirical likelihood-based dimension reduction inference for linear error-in-responses models with validation study[J]. SCIENCE IN CHINA SERIES A-MATHEMATICS,2004,47(6):921-939. |
APA | Wang, QH,&Wolfgang, H.(2004).Empirical likelihood-based dimension reduction inference for linear error-in-responses models with validation study.SCIENCE IN CHINA SERIES A-MATHEMATICS,47(6),921-939. |
MLA | Wang, QH,et al."Empirical likelihood-based dimension reduction inference for linear error-in-responses models with validation study".SCIENCE IN CHINA SERIES A-MATHEMATICS 47.6(2004):921-939. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。