Normal and tangential continuous elements for least-squares mixed finite element methods
文献类型:期刊论文
作者 | Duan, HY; Liang, GP |
刊名 | NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS
![]() |
出版日期 | 2004-07-01 |
卷号 | 20期号:4页码:609-623 |
关键词 | least-squares mixed finite element method second-order elliptic problem normal or tangential continuous element magnetostatic problem |
ISSN号 | 0749-159X |
DOI | 10.1002/num.20002 |
英文摘要 | We consider a finite element discretization of the primal first-order least-squares mixed formulation of the second-order elliptic problem. The unknown variables are displacement and flux, which are approximated by equal-order elements of the usual continuous element and the normal continuous element, respectively. We show that the error bounds for all variables are optimal. In addition, a field-based least-squares finite element method is proposed for the 3D-magnetostatic problem, where both magnetic field and magnetic flux are taken as two independent variables which are approximated by the tangential continuous and the normal continuous elements, respectively. Coerciveness and optimal error bounds are obtained. (C) 2004 Wiley Periodicals, Inc. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000222022400006 |
出版者 | JOHN WILEY & SONS INC |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/776] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Duan, HY |
作者单位 | Chinese Acad Sci, Math Inst, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Duan, HY,Liang, GP. Normal and tangential continuous elements for least-squares mixed finite element methods[J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS,2004,20(4):609-623. |
APA | Duan, HY,&Liang, GP.(2004).Normal and tangential continuous elements for least-squares mixed finite element methods.NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS,20(4),609-623. |
MLA | Duan, HY,et al."Normal and tangential continuous elements for least-squares mixed finite element methods".NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS 20.4(2004):609-623. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。