Geometry of skew-Hermitian matrices
文献类型:期刊论文
作者 | Huang, LP; Wan, ZX |
刊名 | LINEAR ALGEBRA AND ITS APPLICATIONS
![]() |
出版日期 | 2005-02-01 |
卷号 | 396页码:127-157 |
关键词 | geometry of matrices skew-Hermitian matrix adjacency division ring with an involution division ring of generalized quaternions |
ISSN号 | 0024-3795 |
DOI | 10.1016/j.laa.2004.08.030 |
英文摘要 | Let D be a division ring with an involution (-). Assume that F = {a is an element of D : a = (a) over bar)} is a proper subfield of D and is contained in the center of D. Let I H-n be the set of n x n skew-Hermitian matrices over D. If H-1, H-2 is an element of I H-n (D) and rank (H-1 - H-2) = 1, H-1 and H-2 are said to be adjacent. The fundamental theorem of the geometry of skew-Hermitian matrices over D is proved: Let n greater than or equal to 2 and A be a bijective map of Y H-n (D) to itself, which preserves the adjacency. Then A is of the form A (X) = alpha (t)(P) over tildeX(sigma) P + H-0 For AllX is an element of I H-n (D), where alpha is an element of F*, P is an element of GL(n) (D), H-0 is an element of I H-n (D), and sigma is an automorphism of D. (C) 2004 Elsevier Inc. All rights reserved. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000226476600007 |
出版者 | ELSEVIER SCIENCE INC |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/1712] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Huang, LP |
作者单位 | 1.Changshsa Univ Sci & Technol, Sch Math & Comp Sci, Changsha 410076, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China 3.Suzhou Univ, Inst Math, Suzhou 215006, Peoples R China |
推荐引用方式 GB/T 7714 | Huang, LP,Wan, ZX. Geometry of skew-Hermitian matrices[J]. LINEAR ALGEBRA AND ITS APPLICATIONS,2005,396:127-157. |
APA | Huang, LP,&Wan, ZX.(2005).Geometry of skew-Hermitian matrices.LINEAR ALGEBRA AND ITS APPLICATIONS,396,127-157. |
MLA | Huang, LP,et al."Geometry of skew-Hermitian matrices".LINEAR ALGEBRA AND ITS APPLICATIONS 396(2005):127-157. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。