Periodic solutions for a class of non-autonomous Hamiltonian systems
文献类型:期刊论文
作者 | Luan, SX; Mao, A |
刊名 | NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
![]() |
出版日期 | 2005-06-30 |
卷号 | 61期号:8页码:1413-1426 |
关键词 | Hamiltonian system periodic solutions Cerami condition local linking |
ISSN号 | 0362-546X |
DOI | 10.1016/j.na.2005.01.108 |
英文摘要 | We consider the existence of nontrivial periodic solutions for a superlinear Hamiltonian system: (H) j u - A (t)u + &DEL; H(t, u)=0, u ε R-,(2N) t ε R. We prove an abstract result on the existence of a critical point for a real-valued functional on a Hilbert space via a new deformation theorem. Different from the works in the literature, the new deformation theorem is constructed under the Cerami-type condition instead of Palais-Smale-type condition. In addition, the main assumption here is weaker than the usual Ambrosetti-Rabinowitz-type condition: 0 < μ H(t, u) &LE; u &BULL; &DEL; H (t, u). &VERBAR; u&VERBAR; &GE; R > 0. This result extends theorems given by Li and Willem (J. Math. Anal. Appl. 189 (1995) 6-32) and Li and Szulkin (J. Differential Equations 112 (1994) 226-238). © 2005 Elsevier Ltd. All rights reserved. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000229126000008 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/2306] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Luan, SX |
作者单位 | 1.Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China 2.Qufu Normal Univ, Dept Math, Shandong 273165, Peoples R China |
推荐引用方式 GB/T 7714 | Luan, SX,Mao, A. Periodic solutions for a class of non-autonomous Hamiltonian systems[J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS,2005,61(8):1413-1426. |
APA | Luan, SX,&Mao, A.(2005).Periodic solutions for a class of non-autonomous Hamiltonian systems.NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS,61(8),1413-1426. |
MLA | Luan, SX,et al."Periodic solutions for a class of non-autonomous Hamiltonian systems".NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS 61.8(2005):1413-1426. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。