Numerical solution for series sine-Gordon equations using variational method and finite element approximation
文献类型:期刊论文
作者 | Wang, QF |
刊名 | APPLIED MATHEMATICS AND COMPUTATION
![]() |
出版日期 | 2005-09-01 |
卷号 | 168期号:1页码:567-599 |
关键词 | sine-Gordon equations numerical solution finite element methods Gauss-Legendre quadrature Runge-Kutta method |
ISSN号 | 0096-3003 |
DOI | 10.1016/j.amc.2004.09.012 |
英文摘要 | This paper investigates numerical solutions for several kinds of sine-Gordon equations using variational method and finite element approximation. For the case of one-dimension and continuous time, a semi-discrete algorithm is proposed using Gauss-Legendre quadrature and Runge-Kutta method. Furthermore, the convergence of the algorithm is proved. Finally, several numerical examples are implemented and some simulation results are presented to show the efficiency of the scheme. (c) 2004 Elsevier Inc. All rights reserved. |
语种 | 英语 |
WOS记录号 | WOS:000232501300043 |
出版者 | ELSEVIER SCIENCE INC |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/2345] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Wang, QF |
作者单位 | Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, QF. Numerical solution for series sine-Gordon equations using variational method and finite element approximation[J]. APPLIED MATHEMATICS AND COMPUTATION,2005,168(1):567-599. |
APA | Wang, QF.(2005).Numerical solution for series sine-Gordon equations using variational method and finite element approximation.APPLIED MATHEMATICS AND COMPUTATION,168(1),567-599. |
MLA | Wang, QF."Numerical solution for series sine-Gordon equations using variational method and finite element approximation".APPLIED MATHEMATICS AND COMPUTATION 168.1(2005):567-599. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。