中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Numerical solution for series sine-Gordon equations using variational method and finite element approximation

文献类型:期刊论文

作者Wang, QF
刊名APPLIED MATHEMATICS AND COMPUTATION
出版日期2005-09-01
卷号168期号:1页码:567-599
关键词sine-Gordon equations numerical solution finite element methods Gauss-Legendre quadrature Runge-Kutta method
ISSN号0096-3003
DOI10.1016/j.amc.2004.09.012
英文摘要This paper investigates numerical solutions for several kinds of sine-Gordon equations using variational method and finite element approximation. For the case of one-dimension and continuous time, a semi-discrete algorithm is proposed using Gauss-Legendre quadrature and Runge-Kutta method. Furthermore, the convergence of the algorithm is proved. Finally, several numerical examples are implemented and some simulation results are presented to show the efficiency of the scheme. (c) 2004 Elsevier Inc. All rights reserved.
语种英语
WOS记录号WOS:000232501300043
出版者ELSEVIER SCIENCE INC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/2345]  
专题中国科学院数学与系统科学研究院
通讯作者Wang, QF
作者单位Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Wang, QF. Numerical solution for series sine-Gordon equations using variational method and finite element approximation[J]. APPLIED MATHEMATICS AND COMPUTATION,2005,168(1):567-599.
APA Wang, QF.(2005).Numerical solution for series sine-Gordon equations using variational method and finite element approximation.APPLIED MATHEMATICS AND COMPUTATION,168(1),567-599.
MLA Wang, QF."Numerical solution for series sine-Gordon equations using variational method and finite element approximation".APPLIED MATHEMATICS AND COMPUTATION 168.1(2005):567-599.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。