Nonstationary Navier-Stokes flows in a two-dimensional exterior domain with rotational symmetries
文献类型:期刊论文
作者 | He, Cheng; Miyakawa, Tetsuro |
刊名 | INDIANA UNIVERSITY MATHEMATICS JOURNAL
![]() |
出版日期 | 2006 |
卷号 | 55期号:5页码:1483-1555 |
关键词 | Navier-Stokes system exterior nonstationary problem total net force L-1-summability group symmetry asymptotic behavior |
ISSN号 | 0022-2518 |
英文摘要 | In a 2D exterior domain, we look for Navier-Stokes flows for which the associated total net force to the boundary vanishes (see (1.2)). It is shown that this is the case at each time whenever the initial velocity is summable and possesses some regularity and rotational symmetry. The result shows that this condition of summability, regularity and rotational symmetry is preserved in time. An asymptotic profile is deduced and a lower bound estimate on time-decay rates is found for such solutions. Moreover, existence is shown for flows with higher symmetry for which the time-decay rates exceed the above-mentioned lower bound. The decay rates are directly connected with the orders of groups of symmetry. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000242108500001 |
出版者 | INDIANA UNIV MATH JOURNAL |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/2524] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | He, Cheng |
作者单位 | 1.Acad Sinica, Acad Math & Syst Sci, Inst Appl Math, Beijing 100080, Peoples R China 2.Kanazawa Univ, Grad Sch Nat Sci & Technol, Kanazawa, Ishikawa 9201192, Japan |
推荐引用方式 GB/T 7714 | He, Cheng,Miyakawa, Tetsuro. Nonstationary Navier-Stokes flows in a two-dimensional exterior domain with rotational symmetries[J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL,2006,55(5):1483-1555. |
APA | He, Cheng,&Miyakawa, Tetsuro.(2006).Nonstationary Navier-Stokes flows in a two-dimensional exterior domain with rotational symmetries.INDIANA UNIVERSITY MATHEMATICS JOURNAL,55(5),1483-1555. |
MLA | He, Cheng,et al."Nonstationary Navier-Stokes flows in a two-dimensional exterior domain with rotational symmetries".INDIANA UNIVERSITY MATHEMATICS JOURNAL 55.5(2006):1483-1555. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。