中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
An algebraic multigrid method for finite element systems on criss-cross grids

文献类型:期刊论文

作者Shu, S; Xu, JC; Yang, Y; Yu, HY
刊名ADVANCES IN COMPUTATIONAL MATHEMATICS
出版日期2006-07-01
卷号25期号:1-3页码:287-304
关键词algebraic multigrid method finite element criss-cross grids convergence analysis
ISSN号1019-7168
DOI10.1007/s10444-004-7627-y
英文摘要In this paper, we design and analyze an algebraic multigrid method for a condensed finite element system on criss-cross grids and then provide a convergence analysis. Criss-cross grid finite element systems represent a large class of finite element systems that can be reduced to a smaller system by first eliminating certain degrees of freedoms. The algebraic multigrid method that we construct is analogous to many other algebraic multigrid methods for more complicated problems such as unstructured grids, but, because of the specialty of our problem, we are able to provide a rigorous convergence analysis to our algebraic multigrid method.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000238665700015
出版者SPRINGER
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/2536]  
专题中国科学院数学与系统科学研究院
作者单位1.Xiangtan Univ, Inst Computat & Appl Math, Xiangtan, Peoples R China
2.Penn State Univ, Dept Math, University Pk, PA 16802 USA
3.Penn State Univ, Ctr Computat Math & Applicat, University Pk, PA 16802 USA
4.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100864, Peoples R China
推荐引用方式
GB/T 7714
Shu, S,Xu, JC,Yang, Y,et al. An algebraic multigrid method for finite element systems on criss-cross grids[J]. ADVANCES IN COMPUTATIONAL MATHEMATICS,2006,25(1-3):287-304.
APA Shu, S,Xu, JC,Yang, Y,&Yu, HY.(2006).An algebraic multigrid method for finite element systems on criss-cross grids.ADVANCES IN COMPUTATIONAL MATHEMATICS,25(1-3),287-304.
MLA Shu, S,et al."An algebraic multigrid method for finite element systems on criss-cross grids".ADVANCES IN COMPUTATIONAL MATHEMATICS 25.1-3(2006):287-304.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。