New error estimates of biquadratic Lagrange elements for Poisson's equation
文献类型:期刊论文
作者 | Huang, HT; Li, ZC; Zhou, AH![]() |
刊名 | APPLIED NUMERICAL MATHEMATICS
![]() |
出版日期 | 2006-05-01 |
卷号 | 56期号:5页码:712-744 |
关键词 | lagrange elements biquadratic elements Poisson's equation global superconvergence ultraconvergence |
ISSN号 | 0168-9274 |
DOI | 10.1016/j.apnum.2005.06.003 |
英文摘要 | In this paper, we report some new ultraconvergence results of biquadratic Lagrange elements for the Dirichlet problem of Poisson's equation, -Delta u = f. The point-line-area interpolant in [V Girault, P.A. Raviart, A Finite Element Methods for Navier-Stokes Equation, Theory and Algorithms, Springer, 1986] is chosen in this paper, instead of the traditional pure point interpolant in [P.G. Ciarlet, Basic error estimates for elliptic problems, in: P.G. Ciarlet, J.L. Lions (Eds.), Finite Element Methods, Part 1, North-Holland, Amsterdam, 199 1, pp. 17-351]. Suppose that the solution is smooth enough, by means of an a posteriori interpolant, the ultraconvergence O(h(4)) in H I norm is proved for uniform rectangles rectangle(ij), and the higher ultraconvergence O(h(6-l)) in H-l (l = 0, 1) norm under the special case of uniform squares rectangle(ij) and f(xxyy) = 0. Even when f(xxyy) not equal 0, we propose two techniques: (1) the Richardson extrapolation method and (2) the correction method, to retain the same higher ultraconvergence results. Moreover, the ultraconvergence O(h(6-l) vertical bar 1nh vertical bar) is also proved for l (l = 0, 1) order infinite norms. In this paper, the numerical experiments are provided to validate all the ultraconvergence results made. Note that the new ultraconvergence results under the special case are three order higher than the optimal convergence rate in [P.G. Ciarlet, Basic error estimates for elliptic problems, in: P.G. Ciarlet, J.L. Lions (Eds.), Finite Element Methods, Part 1, North-Holland, Amsterdam, 1991, pp. 17=351], and one order than that in [Q. Lin, N. Yan, A. Zhou, A rectangle test for interpolated finite elements, in: Proc. Sys. Sci. and Sys. Engrg., Great Wall Culture Publishers, Hong Kong, 1991, pp. 217-229]. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000236426000008 |
出版者 | ELSEVIER SCIENCE BV |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/2644] ![]() |
专题 | 计算数学与科学工程计算研究所 |
通讯作者 | Li, ZC |
作者单位 | 1.Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan 2.Natl Sun Yat Sen Univ, Dept Comp Sci & Engn, Kaohsiung 80424, Taiwan 3.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Huang, HT,Li, ZC,Zhou, AH. New error estimates of biquadratic Lagrange elements for Poisson's equation[J]. APPLIED NUMERICAL MATHEMATICS,2006,56(5):712-744. |
APA | Huang, HT,Li, ZC,&Zhou, AH.(2006).New error estimates of biquadratic Lagrange elements for Poisson's equation.APPLIED NUMERICAL MATHEMATICS,56(5),712-744. |
MLA | Huang, HT,et al."New error estimates of biquadratic Lagrange elements for Poisson's equation".APPLIED NUMERICAL MATHEMATICS 56.5(2006):712-744. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。