A hierarchy of nonlinear differential-difference equations and a new Bargmann type integrable system
文献类型:期刊论文
作者 | Sun, Ye-Peng; Chen, Deng-Yuan; Xu, Xi-Xiang |
刊名 | PHYSICS LETTERS A
![]() |
出版日期 | 2006-11-06 |
卷号 | 359期号:1页码:47-51 |
关键词 | differential-difference equation Hamiltonian structure binary nonlinearization Liouville integrability |
ISSN号 | 0375-9601 |
DOI | 10.1016/j.physleta.2006.05.084 |
英文摘要 | A hierarchy of nonlinear differential-difference equations is derived from a new discrete spectral problem. The Hamiltonian structure of the resulting hierarchy is constructed by means of a trace identity formula. Moreover, a new Bargmann type integrable system associated with the hierarchy is presented by applying the binary nonlinearization approach of Lax pairs. Based on the symmetry constraints and the generating function of integrals of motion, the resulting system is further proved to be completely integrable Hamiltonian system in the Liouville sense. (c) 2006 Elsevier B.V. All rights reserved. |
WOS研究方向 | Physics |
语种 | 英语 |
WOS记录号 | WOS:000242252700010 |
出版者 | ELSEVIER SCIENCE BV |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/2842] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Sun, Ye-Peng |
作者单位 | 1.Chinese Acad Sci, AMSS, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China 2.Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China 3.Shandong Univ Sci & Technol, Coll Sci, Qingdao 266510, Peoples R China |
推荐引用方式 GB/T 7714 | Sun, Ye-Peng,Chen, Deng-Yuan,Xu, Xi-Xiang. A hierarchy of nonlinear differential-difference equations and a new Bargmann type integrable system[J]. PHYSICS LETTERS A,2006,359(1):47-51. |
APA | Sun, Ye-Peng,Chen, Deng-Yuan,&Xu, Xi-Xiang.(2006).A hierarchy of nonlinear differential-difference equations and a new Bargmann type integrable system.PHYSICS LETTERS A,359(1),47-51. |
MLA | Sun, Ye-Peng,et al."A hierarchy of nonlinear differential-difference equations and a new Bargmann type integrable system".PHYSICS LETTERS A 359.1(2006):47-51. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。