中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A hierarchy of nonlinear differential-difference equations and a new Bargmann type integrable system

文献类型:期刊论文

作者Sun, Ye-Peng; Chen, Deng-Yuan; Xu, Xi-Xiang
刊名PHYSICS LETTERS A
出版日期2006-11-06
卷号359期号:1页码:47-51
关键词differential-difference equation Hamiltonian structure binary nonlinearization Liouville integrability
ISSN号0375-9601
DOI10.1016/j.physleta.2006.05.084
英文摘要A hierarchy of nonlinear differential-difference equations is derived from a new discrete spectral problem. The Hamiltonian structure of the resulting hierarchy is constructed by means of a trace identity formula. Moreover, a new Bargmann type integrable system associated with the hierarchy is presented by applying the binary nonlinearization approach of Lax pairs. Based on the symmetry constraints and the generating function of integrals of motion, the resulting system is further proved to be completely integrable Hamiltonian system in the Liouville sense. (c) 2006 Elsevier B.V. All rights reserved.
WOS研究方向Physics
语种英语
WOS记录号WOS:000242252700010
出版者ELSEVIER SCIENCE BV
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/2842]  
专题中国科学院数学与系统科学研究院
通讯作者Sun, Ye-Peng
作者单位1.Chinese Acad Sci, AMSS, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
2.Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
3.Shandong Univ Sci & Technol, Coll Sci, Qingdao 266510, Peoples R China
推荐引用方式
GB/T 7714
Sun, Ye-Peng,Chen, Deng-Yuan,Xu, Xi-Xiang. A hierarchy of nonlinear differential-difference equations and a new Bargmann type integrable system[J]. PHYSICS LETTERS A,2006,359(1):47-51.
APA Sun, Ye-Peng,Chen, Deng-Yuan,&Xu, Xi-Xiang.(2006).A hierarchy of nonlinear differential-difference equations and a new Bargmann type integrable system.PHYSICS LETTERS A,359(1),47-51.
MLA Sun, Ye-Peng,et al."A hierarchy of nonlinear differential-difference equations and a new Bargmann type integrable system".PHYSICS LETTERS A 359.1(2006):47-51.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。