中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Solutions of nonlinear Dirac equations

文献类型:期刊论文

作者Bartsch, Thomas; Ding, Yanheng
刊名JOURNAL OF DIFFERENTIAL EQUATIONS
出版日期2006-07-01
卷号226期号:1页码:210-249
关键词nonlinear Dirac equations variational methods strongly indefinite functionals
ISSN号0022-0396
DOI10.1016/j.jde.2005.08.014
英文摘要We study the Dirac equation: -i delta(t)psi = ich (3)Sigma(k=1) alpha(k)delta(k)psi - mc(2)beta psi + del(psi)G(x, psi) and obtain existence and multiplicity results of stationary solutions for several classes of nonlinearities G : R-3 x C-4 -> R modeling various types of interaction. A typical result states that if G (x, u) depends periodically on x and is even in u, the problem has infinitely many geometrically different localized solutions. The arguments are variational. The associated Lagrangian functional is strongly indefinite and the Palais-Smale condition does not hold. We apply some recently developed critical point theorems. (c) 2005 Elsevier Inc. All rights reserved.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000238548800009
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/2979]  
专题中国科学院数学与系统科学研究院
通讯作者Bartsch, Thomas
作者单位1.Univ Giessen, Math Inst, D-35392 Giessen, Germany
2.Chinese Acad Sci, Inst Math, AMSS, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Bartsch, Thomas,Ding, Yanheng. Solutions of nonlinear Dirac equations[J]. JOURNAL OF DIFFERENTIAL EQUATIONS,2006,226(1):210-249.
APA Bartsch, Thomas,&Ding, Yanheng.(2006).Solutions of nonlinear Dirac equations.JOURNAL OF DIFFERENTIAL EQUATIONS,226(1),210-249.
MLA Bartsch, Thomas,et al."Solutions of nonlinear Dirac equations".JOURNAL OF DIFFERENTIAL EQUATIONS 226.1(2006):210-249.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。