Oscillation of second order self-conjugate differential equation with impulses
文献类型:期刊论文
作者 | Li, Qiaoluan; Liang, Haiyan; Zhang, Zhenguo; Yu, Yuanhong |
刊名 | JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
![]() |
出版日期 | 2006-12-01 |
卷号 | 197期号:1页码:78-88 |
关键词 | self-conjugate differential equation impulses oscillation |
ISSN号 | 0377-0427 |
DOI | 10.1016/j.cam.2005.10.035 |
英文摘要 | In this paper, we investigate the oscillation of second-order self-conjugate differential equation with impulses (a(t)(x(t) + p(t)x(t-tau))')' + q(t)x(t - sigma) = 0, t not equal t(k), t > t(0), (1) x(t(k)(+)) = (1 + b(k))x(t(k)), k = 1, 2, (2) x'(t(k)(+))=(1+b(k))x'(t(k)), k = 1,2, (3) where a, p, q are continuous functions in [t(0), +infinity), q(t) >= 0, a(t) > 0, integral(infinity)(t0) (I/a(s)) ds = infinity, tau > 0, sigma > 0, b(k) > -1, 0 < t(0) < t(1) < t(2) < ... < t(k) < ... and lim(k ->infinity) t(k) = infinity. We get some sufficient conditions for the oscillation of solutions of Eqs. (1)-(3). (c) 2005 Elsevier B.V. All rights reserved. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000240787300007 |
出版者 | ELSEVIER SCIENCE BV |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/2988] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Li, Qiaoluan |
作者单位 | 1.Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050016, Peoples R China 2.Acad Sinica, Inst Appl Math, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Qiaoluan,Liang, Haiyan,Zhang, Zhenguo,et al. Oscillation of second order self-conjugate differential equation with impulses[J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,2006,197(1):78-88. |
APA | Li, Qiaoluan,Liang, Haiyan,Zhang, Zhenguo,&Yu, Yuanhong.(2006).Oscillation of second order self-conjugate differential equation with impulses.JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,197(1),78-88. |
MLA | Li, Qiaoluan,et al."Oscillation of second order self-conjugate differential equation with impulses".JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 197.1(2006):78-88. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。