Joint identification of plant rational models and noise distribution functions using binary-valued observations
文献类型:期刊论文
作者 | Wang, LY; Yin, GG; Zhang, JF![]() |
刊名 | AUTOMATICA
![]() |
出版日期 | 2006-04-01 |
卷号 | 42期号:4页码:535-547 |
关键词 | system identification estimation binary-valued observations identifiability parameter convergence recursive algorithms |
ISSN号 | 0005-1098 |
DOI | 10.1016/j.automatica.2005.12.004 |
英文摘要 | System identification of plants with binary-valued output observations is of importance in understanding modeling capability and limitations for systems with limited sensor information, establishing relationships between communication resource limitations and identification complexity, and studying sensor networks. This paper resolves two issues arising in such system identification problems. First, regression structures for identifying a rational model contain non-smooth nonlinearities, leading to a difficult nonlinear filtering problem. By introducing a two-step identification procedure that employs periodic signals, empirical measures, and identifiability features, rational models can be identified without resorting to complicated nonlinear searching algorithms. Second, by formulating a joint identification problem, we are able to accommodate scenarios in which noise distribution functions are unknown. Convergence of parameter estimates is established. Recursive algorithms for joint identification and their key properties are further developed. (c) 2006 Elsevier Ltd. All rights reserved. |
WOS研究方向 | Automation & Control Systems ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000236340300003 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/3323] ![]() |
专题 | 系统科学研究所 |
通讯作者 | Wang, LY |
作者单位 | 1.Wayne State Univ, Dept Elect & Comp Engn, Detroit, MI 48202 USA 2.Wayne State Univ, Dept Math, Detroit, MI 48202 USA 3.Chinese Acad Sci, LSC, Acad Math & Syst Sci, Beijing 100864, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, LY,Yin, GG,Zhang, JF. Joint identification of plant rational models and noise distribution functions using binary-valued observations[J]. AUTOMATICA,2006,42(4):535-547. |
APA | Wang, LY,Yin, GG,&Zhang, JF.(2006).Joint identification of plant rational models and noise distribution functions using binary-valued observations.AUTOMATICA,42(4),535-547. |
MLA | Wang, LY,et al."Joint identification of plant rational models and noise distribution functions using binary-valued observations".AUTOMATICA 42.4(2006):535-547. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。