中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Conformal invariant asymptotic expansion approach for solving (3+1)-dimensional JM equation

文献类型:期刊论文

作者Li, ZF; Ruan, HY
刊名COMMUNICATIONS IN THEORETICAL PHYSICS
出版日期2006-06-15
卷号45期号:6页码:979-984
关键词(3+1)-dimensional Jimbo-Miwa (JM) equation conformal invariant asymptotic expansion approach Painleve property approximate and exact solutions
ISSN号0253-6102
英文摘要The (3+1)-dimensional Jimbo-Miwa (JM) equation is solved approximately by using the conformal invariant asymptotic expansion approach presented by Ruan. By solving the new (3+1)-dimensional integrable models, which are conformal invariant and possess Painleve property, the approximate solutions are obtained for the JM equation, containing not only one-soliton solutions but also periodic solutions and multi-soliton solutions. Some approximate solutions happen to be exact and some approximate solutions can become exact by choosing relations between the parameters properly.
WOS研究方向Physics
语种英语
WOS记录号WOS:000238414100004
出版者INTERNATIONAL ACADEMIC PUBLISHERS LIMITED
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/3581]  
专题中国科学院数学与系统科学研究院
通讯作者Li, ZF
作者单位1.Ningbo Univ, Dept Phys, Ningbo 315211, Peoples R China
2.Ningbo Univ, Ctr Nonlinear Sci, Ningbo 315211, Peoples R China
3.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci & Engn Comp, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Li, ZF,Ruan, HY. Conformal invariant asymptotic expansion approach for solving (3+1)-dimensional JM equation[J]. COMMUNICATIONS IN THEORETICAL PHYSICS,2006,45(6):979-984.
APA Li, ZF,&Ruan, HY.(2006).Conformal invariant asymptotic expansion approach for solving (3+1)-dimensional JM equation.COMMUNICATIONS IN THEORETICAL PHYSICS,45(6),979-984.
MLA Li, ZF,et al."Conformal invariant asymptotic expansion approach for solving (3+1)-dimensional JM equation".COMMUNICATIONS IN THEORETICAL PHYSICS 45.6(2006):979-984.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。