中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Weyl type algebras from quantum tori

文献类型:期刊论文

作者Zhao, KM
刊名COMMUNICATIONS IN CONTEMPORARY MATHEMATICS
出版日期2006-04-01
卷号8期号:2页码:135-165
关键词quantum torus simple associative algebra derivation second cohomology group isomorphism
ISSN号0219-1997
英文摘要We introduce and study the quantum version of the differential operator algebra on Laurent polynomials and its associated Lie algebra over a field F of characteristic 0. The q-quantum torus F-q is the unital associative algebra over F generated by t(1)(+/- 1),...,t(n)(+/- 1) subject to the defining relations t(i)t(j) = q(i), (j)t(j)t(i), where q(i,i) = 1, q(i,j) = q(j,i)(-1). Let D be a subspace of circle plus(n)(i=1) F partial derivative(i) where partial derivative(i) is the derivation of F-q sending t(i)(k1...)t(n)(kn) to k(i)t(1)(...)(k1)t(n)(kn). Then, the quantum differential operator algebra is the associative algebra F-q[D]. Assume that F-q[D] is simple as an associative algebra. We compute explicitly all 2-cocycles of F-q[D], viewed as a Lie algebra. More precisely, we show that the second cohomology group of F-q[D] has dimension n if D = 0, dimension 1 if dim D = 1, and dimension 0 if dim > 1. We also determine all isomorphisms and anti-isomorphisms F-q[D] -> F-q'[D'] of simple associative algebras, and all isomorphisms F-q[D]/F -> F-q'[D']/F of simple Lie algebras.
语种英语
WOS记录号WOS:000237496200001
出版者WORLD SCIENTIFIC PUBL CO PTE LTD
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/3650]  
专题中国科学院数学与系统科学研究院
通讯作者Zhao, KM
作者单位1.Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
2.Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Zhao, KM. Weyl type algebras from quantum tori[J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS,2006,8(2):135-165.
APA Zhao, KM.(2006).Weyl type algebras from quantum tori.COMMUNICATIONS IN CONTEMPORARY MATHEMATICS,8(2),135-165.
MLA Zhao, KM."Weyl type algebras from quantum tori".COMMUNICATIONS IN CONTEMPORARY MATHEMATICS 8.2(2006):135-165.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。