中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Computation of transmissions and reflections in geometrical optics via the reduced Liouville equation

文献类型:期刊论文

作者Jin, Shi; Wen, Xin
刊名WAVE MOTION
出版日期2006-10-01
卷号43期号:8页码:667-688
关键词geometrical optics reduced Liouville equation level set method Hamiltonian-preserving schemes Snell's law of refraction
ISSN号0165-2125
DOI10.1016/j.wavemoti.2006.06.001
英文摘要We develop a numerical scheme for the wave front computation of complete transmissions and reflections in geometrical optics. Such a problem can be formulated by a reduced Lionville equation with a discontinuous local wave speed or index of refraction, arising in the high frequency limit of linear waves through inhomogeneous media. The key idea is to incorporate Snell's Law of Refraction into the numerical flux for the reduced Lionville equation. This scheme allows a hyperbolic CFL condition, under which positivity, and stabilities in both 1 infinity and 1(1) norms, are established. Numerical experiments are carried out to demonstrate the validity and accuracy of this new scheme. (C) 2006 Elsevier B.V. All rights reserved.
WOS研究方向Acoustics ; Mechanics ; Physics
语种英语
WOS记录号WOS:000241654400003
出版者ELSEVIER SCIENCE BV
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/3653]  
专题中国科学院数学与系统科学研究院
通讯作者Wen, Xin
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, Beijing 100080, Peoples R China
2.Univ Wisconsin, Dept Math, Madison, WI 53706 USA
推荐引用方式
GB/T 7714
Jin, Shi,Wen, Xin. Computation of transmissions and reflections in geometrical optics via the reduced Liouville equation[J]. WAVE MOTION,2006,43(8):667-688.
APA Jin, Shi,&Wen, Xin.(2006).Computation of transmissions and reflections in geometrical optics via the reduced Liouville equation.WAVE MOTION,43(8),667-688.
MLA Jin, Shi,et al."Computation of transmissions and reflections in geometrical optics via the reduced Liouville equation".WAVE MOTION 43.8(2006):667-688.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。