Natural boundary element method for three dimensional exterior harmonic problem with an inner prolate spheroid boundary
文献类型:期刊论文
作者 | Huang, HY; Yu, DH |
刊名 | JOURNAL OF COMPUTATIONAL MATHEMATICS
![]() |
出版日期 | 2006-03-01 |
卷号 | 24期号:2页码:193-208 |
关键词 | natural boundary reduction prolate spheroid boundary finite element exterior harmonic problem |
ISSN号 | 0254-9409 |
英文摘要 | In this paper, we study natural boundary reduction for Laplace equation with Dirichlet or Neumann boundary condition in a three-dimensional unbounded domain, which is the outside domain of a prolate spheroid. We express the Poisson integral formula and natural integral operator in a series form explicitly. Thus the original problem is reduced to a boundary integral equation on a prolate spheroid. The variational formula for the reduced problem and its well-posedness are discussed. Boundary element approximation for the variational problem and its error estimates, which have relation to the mesh size and the terms after the series is truncated, are also presented. Two numerical examples are presented to demonstrate the effectiveness and error estimates of this method. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000235901100008 |
出版者 | GLOBAL SCIENCE PRESS |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/3908] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Huang, HY |
作者单位 | Chinese Acad Sci, LSEC ICMSEC, Acad Math & Syst Sci, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Huang, HY,Yu, DH. Natural boundary element method for three dimensional exterior harmonic problem with an inner prolate spheroid boundary[J]. JOURNAL OF COMPUTATIONAL MATHEMATICS,2006,24(2):193-208. |
APA | Huang, HY,&Yu, DH.(2006).Natural boundary element method for three dimensional exterior harmonic problem with an inner prolate spheroid boundary.JOURNAL OF COMPUTATIONAL MATHEMATICS,24(2),193-208. |
MLA | Huang, HY,et al."Natural boundary element method for three dimensional exterior harmonic problem with an inner prolate spheroid boundary".JOURNAL OF COMPUTATIONAL MATHEMATICS 24.2(2006):193-208. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。