中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Relative length of longest paths and cycles in graphs

文献类型:期刊论文

作者Liu, Huiqing; Lu, Mei; Tian, Feng
刊名GRAPHS AND COMBINATORICS
出版日期2007-08-01
卷号23期号:4页码:433-443
关键词relative length the longest path cycle
ISSN号0911-0119
DOI10.1007/s00373-007-0740-1
英文摘要For a graph G, let diff(G) = p(G)- c(G), where p(G) and c(G) denote the orders of a longest path and a longest cycle inG, respectively. Let G be a 3- connected graph of order n. In the paper, we give a best-possible lower bound to sigma(4)( G) to assure diff( G) <= 1. The result settles a conjecture in J. Graph Theory 37 ( 2001), 137 - 156.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000248581100008
出版者SPRINGER JAPAN KK
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/4019]  
专题中国科学院数学与系统科学研究院
通讯作者Liu, Huiqing
作者单位1.Hubei Univ, Sch Math & Comp Sci, Wuhan 430062, Peoples R China
2.Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
3.Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Liu, Huiqing,Lu, Mei,Tian, Feng. Relative length of longest paths and cycles in graphs[J]. GRAPHS AND COMBINATORICS,2007,23(4):433-443.
APA Liu, Huiqing,Lu, Mei,&Tian, Feng.(2007).Relative length of longest paths and cycles in graphs.GRAPHS AND COMBINATORICS,23(4),433-443.
MLA Liu, Huiqing,et al."Relative length of longest paths and cycles in graphs".GRAPHS AND COMBINATORICS 23.4(2007):433-443.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。