中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Existence and non-existence of solutions to elliptic equations related to the Caffarelli-Kohn-Nirenberg inequalities

文献类型:期刊论文

作者Bartsch, Thomas; Peng, Shuangjie; Zhang, Zhitao
刊名CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
出版日期2007-09-01
卷号30期号:1页码:113-136
ISSN号0944-2669
DOI10.1007/s00526-006-0086-1
英文摘要We investigate elliptic equations related to the Caffarelli-Kohn-Nirenberg inequalities: -div(|x|(alpha)|del u vertical bar(p-2)del u) = |x|(beta)u(P(alpha,beta)-1), u(x) > 0, x.is an element of Omega subset of R-N (N = 3), 1 < p < N and alpha, beta is an element of R such that (p(N+beta))/(N-p+alpha) . For various parameters alpha, beta and various domains Omega, we establish some existence and non-existence results of solutions in rather general, possibly degenerate or singular settings.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000247271800005
出版者SPRINGER
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/4076]  
专题中国科学院数学与系统科学研究院
通讯作者Bartsch, Thomas
作者单位1.Univ Giessen, Inst Math, D-35392 Giessen, Germany
2.Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
3.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Bartsch, Thomas,Peng, Shuangjie,Zhang, Zhitao. Existence and non-existence of solutions to elliptic equations related to the Caffarelli-Kohn-Nirenberg inequalities[J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS,2007,30(1):113-136.
APA Bartsch, Thomas,Peng, Shuangjie,&Zhang, Zhitao.(2007).Existence and non-existence of solutions to elliptic equations related to the Caffarelli-Kohn-Nirenberg inequalities.CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS,30(1),113-136.
MLA Bartsch, Thomas,et al."Existence and non-existence of solutions to elliptic equations related to the Caffarelli-Kohn-Nirenberg inequalities".CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS 30.1(2007):113-136.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。