中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Restricted root systems and spin representations

文献类型:期刊论文

作者Han, Gang; Sun, Bin-Yong
刊名ALGEBRAS AND REPRESENTATION THEORY
出版日期2007-10-01
卷号10期号:5页码:463-469
关键词restricted root system Weyl group spin representation isotropy representation
ISSN号1386-923X
DOI10.1007/s10468-007-9061-6
英文摘要Let g(0) be a real semisimple Lie algebra. Let g0 = t(0)circle plus p(0) be the corresponding Cartan decomposition and h(0) = t(0) circle plus a(0) be a maximally compact Cartan subalgebra of g(0). Let g(0) = t(0) circle plus p(0) and h = t(0)circle plus a(0) be the corresponding complexifications. The set Delta( g, t) consists of all the linear forms on t which are the restriction to t of the roots in the root system Delta( g, h) of g with respect to h. The main result of the paper is to prove that Delta( g, t) is also a ( maybe non- reduced) root system and its Weyl group can be identified with a subgroup of the Weyl group of Delta( g, h). Let Spin nu: t -> End S be the composition of the isotropy representation nu: -> t so( p) with the spin representation Spin nu: -> t so( p). End S. Finally as an application, we give a nice description of the t- module structure on S in terms of the restricted root system Delta( g, t) and its Weyl group.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000248910300004
出版者SPRINGER
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/4417]  
专题数学所
通讯作者Han, Gang
作者单位1.Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
2.CAS, Acad Math & Syst Sci, Beijing 10080, Peoples R China
推荐引用方式
GB/T 7714
Han, Gang,Sun, Bin-Yong. Restricted root systems and spin representations[J]. ALGEBRAS AND REPRESENTATION THEORY,2007,10(5):463-469.
APA Han, Gang,&Sun, Bin-Yong.(2007).Restricted root systems and spin representations.ALGEBRAS AND REPRESENTATION THEORY,10(5),463-469.
MLA Han, Gang,et al."Restricted root systems and spin representations".ALGEBRAS AND REPRESENTATION THEORY 10.5(2007):463-469.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。