Reducibility of hyperplane arrangements
文献类型:期刊论文
作者 | Jiang, Guang-feng; Yu, Jian-ming; Jianming YU![]() |
刊名 | SCIENCE IN CHINA SERIES A-MATHEMATICS
![]() |
出版日期 | 2007-05-01 |
卷号 | 50期号:5页码:689-697 |
关键词 | hyperplane arrangement irreducible component logarithmic derivation |
ISSN号 | 1006-9283 |
DOI | 10.1007/s11425-007-2075-z |
英文摘要 | Certain problems on reducibility of central hyperplane arrangements axe settled. Firstly, a necessary and sufficient condition on reducibility is obtained. More precisely, it is proved that the number of irreducible components of a central hyperplane arrangement equals the dimension of the space consisting of the logarithmic derivations of the arrangement with degree zero or one. Secondly, it is proved that the decomposition of an arrangement into a direct sum of its irreducible components is unique up to an isomorphism of the ambient space. Thirdly, an effective algorithm for determining the number of irreducible components and decomposing an arrangement into a direct sum of its irreducible components is offered. This algorithm can decide whether an arrangement is reducible, and if it is the case, what the defining equations of irreducible components are. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000247154400008 |
出版者 | SCIENCE CHINA PRESS |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/5083] ![]() |
专题 | 数学所 |
通讯作者 | Jiang, Guang-feng |
作者单位 | 1.Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Jiang, Guang-feng,Yu, Jian-ming,Jianming YU. Reducibility of hyperplane arrangements[J]. SCIENCE IN CHINA SERIES A-MATHEMATICS,2007,50(5):689-697. |
APA | Jiang, Guang-feng,Yu, Jian-ming,&Jianming YU.(2007).Reducibility of hyperplane arrangements.SCIENCE IN CHINA SERIES A-MATHEMATICS,50(5),689-697. |
MLA | Jiang, Guang-feng,et al."Reducibility of hyperplane arrangements".SCIENCE IN CHINA SERIES A-MATHEMATICS 50.5(2007):689-697. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。