中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Reducibility of hyperplane arrangements

文献类型:期刊论文

作者Jiang, Guang-feng; Yu, Jian-ming; Jianming YU
刊名SCIENCE IN CHINA SERIES A-MATHEMATICS
出版日期2007-05-01
卷号50期号:5页码:689-697
关键词hyperplane arrangement irreducible component logarithmic derivation
ISSN号1006-9283
DOI10.1007/s11425-007-2075-z
英文摘要Certain problems on reducibility of central hyperplane arrangements axe settled. Firstly, a necessary and sufficient condition on reducibility is obtained. More precisely, it is proved that the number of irreducible components of a central hyperplane arrangement equals the dimension of the space consisting of the logarithmic derivations of the arrangement with degree zero or one. Secondly, it is proved that the decomposition of an arrangement into a direct sum of its irreducible components is unique up to an isomorphism of the ambient space. Thirdly, an effective algorithm for determining the number of irreducible components and decomposing an arrangement into a direct sum of its irreducible components is offered. This algorithm can decide whether an arrangement is reducible, and if it is the case, what the defining equations of irreducible components are.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000247154400008
出版者SCIENCE CHINA PRESS
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/5083]  
专题数学所
通讯作者Jiang, Guang-feng
作者单位1.Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Jiang, Guang-feng,Yu, Jian-ming,Jianming YU. Reducibility of hyperplane arrangements[J]. SCIENCE IN CHINA SERIES A-MATHEMATICS,2007,50(5):689-697.
APA Jiang, Guang-feng,Yu, Jian-ming,&Jianming YU.(2007).Reducibility of hyperplane arrangements.SCIENCE IN CHINA SERIES A-MATHEMATICS,50(5),689-697.
MLA Jiang, Guang-feng,et al."Reducibility of hyperplane arrangements".SCIENCE IN CHINA SERIES A-MATHEMATICS 50.5(2007):689-697.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。