中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Asymptotic expansion and extrapolation for the Eigenvalue approximation of the biharmonic eigenvalue problem by Ciarlet-Raviart scheme

文献类型:期刊论文

作者Chen, Wei; Lin, Qun
刊名ADVANCES IN COMPUTATIONAL MATHEMATICS
出版日期2007-07-01
卷号27期号:1页码:95-106
关键词eigenvalue problem biharmonic equation Ciarlet-Raviart scheme asymptotic expansion extrapolation a posteriori error estimate
ISSN号1019-7168
DOI10.1007/s10444-007-9031-x
英文摘要We propose and analyze the Ciarlet-Raviart mixed scheme for solving the biharmonic eigenvalue problem with bilinear finite elements. We derive a higher order convergence rate for eigenvalue and eigenfunction approximations. Furthermore, we give an asymptotic expansion of the eigenvalue error, from which an efficient extrapolation and an a posteriori error estimate for the eigenvalue are given. Finally, numerical experiments illustrating the theoretical results are reported.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000247383500005
出版者SPRINGER
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/5134]  
专题计算数学与科学工程计算研究所
作者单位1.Shandong Univ, Sch Econ, Jinan 250100, Peoples R China
2.Acad Sinica, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Chen, Wei,Lin, Qun. Asymptotic expansion and extrapolation for the Eigenvalue approximation of the biharmonic eigenvalue problem by Ciarlet-Raviart scheme[J]. ADVANCES IN COMPUTATIONAL MATHEMATICS,2007,27(1):95-106.
APA Chen, Wei,&Lin, Qun.(2007).Asymptotic expansion and extrapolation for the Eigenvalue approximation of the biharmonic eigenvalue problem by Ciarlet-Raviart scheme.ADVANCES IN COMPUTATIONAL MATHEMATICS,27(1),95-106.
MLA Chen, Wei,et al."Asymptotic expansion and extrapolation for the Eigenvalue approximation of the biharmonic eigenvalue problem by Ciarlet-Raviart scheme".ADVANCES IN COMPUTATIONAL MATHEMATICS 27.1(2007):95-106.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。