Asymptotic expansion and extrapolation for the Eigenvalue approximation of the biharmonic eigenvalue problem by Ciarlet-Raviart scheme
文献类型:期刊论文
作者 | Chen, Wei; Lin, Qun![]() |
刊名 | ADVANCES IN COMPUTATIONAL MATHEMATICS
![]() |
出版日期 | 2007-07-01 |
卷号 | 27期号:1页码:95-106 |
关键词 | eigenvalue problem biharmonic equation Ciarlet-Raviart scheme asymptotic expansion extrapolation a posteriori error estimate |
ISSN号 | 1019-7168 |
DOI | 10.1007/s10444-007-9031-x |
英文摘要 | We propose and analyze the Ciarlet-Raviart mixed scheme for solving the biharmonic eigenvalue problem with bilinear finite elements. We derive a higher order convergence rate for eigenvalue and eigenfunction approximations. Furthermore, we give an asymptotic expansion of the eigenvalue error, from which an efficient extrapolation and an a posteriori error estimate for the eigenvalue are given. Finally, numerical experiments illustrating the theoretical results are reported. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000247383500005 |
出版者 | SPRINGER |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/5134] ![]() |
专题 | 计算数学与科学工程计算研究所 |
作者单位 | 1.Shandong Univ, Sch Econ, Jinan 250100, Peoples R China 2.Acad Sinica, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Chen, Wei,Lin, Qun. Asymptotic expansion and extrapolation for the Eigenvalue approximation of the biharmonic eigenvalue problem by Ciarlet-Raviart scheme[J]. ADVANCES IN COMPUTATIONAL MATHEMATICS,2007,27(1):95-106. |
APA | Chen, Wei,&Lin, Qun.(2007).Asymptotic expansion and extrapolation for the Eigenvalue approximation of the biharmonic eigenvalue problem by Ciarlet-Raviart scheme.ADVANCES IN COMPUTATIONAL MATHEMATICS,27(1),95-106. |
MLA | Chen, Wei,et al."Asymptotic expansion and extrapolation for the Eigenvalue approximation of the biharmonic eigenvalue problem by Ciarlet-Raviart scheme".ADVANCES IN COMPUTATIONAL MATHEMATICS 27.1(2007):95-106. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。