中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Holomorphic invariant forms of a bounded domain

文献类型:期刊论文

作者Lu QiKeng
刊名SCIENCE IN CHINA SERIES A-MATHEMATICS
出版日期2008-11-01
卷号51期号:11页码:1945-1964
关键词complete ortho-normal system holomorphic invariant forms
ISSN号1006-9283
DOI10.1007/s11425-008-0129-5
英文摘要Given a complete ortho-normal system phi = (phi(0), phi(1), phi(2),...) of L(2)H(D), the space of holomorphic and absolutely square integrable functions in the bounded domain D of C(n), we construct a holomorphic imbedding iota(phi) : D -> F(n, infinity), the complex infinite dimensional Grassmann manifold of rank n. It is known that in F(n, infinity) there are n closed (mu, mu)-forms tau(mu) (mu = 1,..., n) which are invariant under the holomorphic isometric automorphism of F(n, infinity) and generate algebraically all the harmonic differential forms of F(n, infinity). So we obtain in D a set of (mu, mu)- forms iota(phi)*tau(mu) (mu = 1,..., n), which are independent of the system. chosen and are invariant under the bi-holomorphic transformations of D. Especially the differential metric ds(1)(2) associated to the Kahler form iota(phi)*tau(1) is a Kahler metric which differs from the Bergman metric ds(2) of D in general, but in case that the Bergman metric is an Einstein metric, ds(1)(2) differs from ds(2) only by a positive constant factor.
语种英语
WOS记录号WOS:000259820400001
出版者SCIENCE PRESS
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/5585]  
专题中国科学院数学与系统科学研究院
通讯作者Lu QiKeng
作者单位Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Lu QiKeng. Holomorphic invariant forms of a bounded domain[J]. SCIENCE IN CHINA SERIES A-MATHEMATICS,2008,51(11):1945-1964.
APA Lu QiKeng.(2008).Holomorphic invariant forms of a bounded domain.SCIENCE IN CHINA SERIES A-MATHEMATICS,51(11),1945-1964.
MLA Lu QiKeng."Holomorphic invariant forms of a bounded domain".SCIENCE IN CHINA SERIES A-MATHEMATICS 51.11(2008):1945-1964.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。