Numerical solution to a linearized KdV equation on unbounded domain
文献类型:期刊论文
作者 | Zheng, Chunxiong1; Wen, Xin2; Han, Houde1,3 |
刊名 | NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS
![]() |
出版日期 | 2008-03-01 |
卷号 | 24期号:2页码:383-399 |
关键词 | absorbing boundary conditions dual-Petrov-Galerkin method linearized KdV equation unbounded domains |
ISSN号 | 0749-159X |
DOI | 10.1002/num.20267 |
英文摘要 | Exact absorbing boundary conditions for a linearized KdV equation are derived in this paper. Applying these boundary conditions at artificial boundary points yields an initial-boundary value problem defined only on a finite interval. A dual-Petrov-Galerkin scheme is proposed for numerical approximation. Fast evaluation method is developed to deal with convolutions involved in the exact absorbing boundary conditions. In the end, some numerical tests are presented to demonstrate the effectiveness and efficiency of the proposed method. (c) 2007 Wiley Periodicals, Inc. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000253245200003 |
出版者 | JOHN WILEY & SONS INC |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/5788] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Zheng, Chunxiong |
作者单位 | 1.Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, Beijing 100080, Peoples R China 3.Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China |
推荐引用方式 GB/T 7714 | Zheng, Chunxiong,Wen, Xin,Han, Houde. Numerical solution to a linearized KdV equation on unbounded domain[J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS,2008,24(2):383-399. |
APA | Zheng, Chunxiong,Wen, Xin,&Han, Houde.(2008).Numerical solution to a linearized KdV equation on unbounded domain.NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS,24(2),383-399. |
MLA | Zheng, Chunxiong,et al."Numerical solution to a linearized KdV equation on unbounded domain".NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS 24.2(2008):383-399. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。