中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A note on conditional AIC for linear mixed-effects models

文献类型:期刊论文

作者Liang, Hua1; Wu, Hulin1; Zou, Guohua2
刊名BIOMETRIKA
出版日期2008-09-01
卷号95期号:3页码:773-778
关键词Akaike information criterion conditional likelihood longitudinal data marginal likelihood mixed-effects model model selection
ISSN号0006-3444
DOI10.1093/biomet/asn023
英文摘要The conventional model selection criterion, the Akaike information criterion, AIC, has been applied to choose candidate models in mixed-effects models by the consideration of marginal likelihood. Vaida & Blanchard (2005) demonstrated that such a marginal AIC and its small sample correction are inappropriate when the research focus is on clusters. Correspondingly, these authors suggested the use of conditional AIC. Their conditional AIC is derived under the assumption that the variance-covariance matrix or scaled variance-covariance matrix of random effects is known. This note provides a general conditional AIC but without these strong assumptions. Simulation studies show that the proposed method is promising.
WOS研究方向Life Sciences & Biomedicine - Other Topics ; Mathematical & Computational Biology ; Mathematics
语种英语
WOS记录号WOS:000258861000018
出版者OXFORD UNIV PRESS
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/6190]  
专题中国科学院数学与系统科学研究院
通讯作者Liang, Hua
作者单位1.Univ Rochester, Med Ctr, Dept Biostat & Computat Biol, Rochester, NY 14642 USA
2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Liang, Hua,Wu, Hulin,Zou, Guohua. A note on conditional AIC for linear mixed-effects models[J]. BIOMETRIKA,2008,95(3):773-778.
APA Liang, Hua,Wu, Hulin,&Zou, Guohua.(2008).A note on conditional AIC for linear mixed-effects models.BIOMETRIKA,95(3),773-778.
MLA Liang, Hua,et al."A note on conditional AIC for linear mixed-effects models".BIOMETRIKA 95.3(2008):773-778.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。