Double elliptic equation expansion approach and novel solutions of (2+1)-dimensional break soliton equation
文献类型:期刊论文
作者 | Sun Wei-Kun1,3; Cao Nan-Bin2,3; Shen Ya-Liang3,4 |
刊名 | COMMUNICATIONS IN THEORETICAL PHYSICS
![]() |
出版日期 | 2008-02-01 |
卷号 | 49期号:2页码:281-286 |
关键词 | break soliton equation symbolic computation double elliptic equations double soliton-like solution nonlinear wave solution |
ISSN号 | 0253-6102 |
英文摘要 | In this paper, by means of double elliptic equation expansion approach, the novel double nonlinear wave solutions of the (2+1)-dimensional break soliton equation are obtained. These double nonlinear wave solutions contain the double Jacobi elliptic function-like solutions, the double solitary wave-like solutions, and so on. The method is also powerful to some other nonlinear wave equations in (2+1) dimensions. |
WOS研究方向 | Physics |
语种 | 英语 |
WOS记录号 | WOS:000253447100005 |
出版者 | IOP PUBLISHING LTD |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/6985] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Shen Ya-Liang |
作者单位 | 1.Tianjin Univ Technol & Educ, Dept Math & Phys, Tianjin 300222, Peoples R China 2.Shijiazhuang Univ Econ, Sch Sci, Shijiazhuang 050031, Peoples R China 3.Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Math Mech, Beijing 100080, Peoples R China 4.Nantong Univ, Sch Sci, Nantong 226019, Peoples R China |
推荐引用方式 GB/T 7714 | Sun Wei-Kun,Cao Nan-Bin,Shen Ya-Liang. Double elliptic equation expansion approach and novel solutions of (2+1)-dimensional break soliton equation[J]. COMMUNICATIONS IN THEORETICAL PHYSICS,2008,49(2):281-286. |
APA | Sun Wei-Kun,Cao Nan-Bin,&Shen Ya-Liang.(2008).Double elliptic equation expansion approach and novel solutions of (2+1)-dimensional break soliton equation.COMMUNICATIONS IN THEORETICAL PHYSICS,49(2),281-286. |
MLA | Sun Wei-Kun,et al."Double elliptic equation expansion approach and novel solutions of (2+1)-dimensional break soliton equation".COMMUNICATIONS IN THEORETICAL PHYSICS 49.2(2008):281-286. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。