中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Improved AIC selection strategy for survival analysis

文献类型:期刊论文

作者Liang, Hua1; Zou, Guohua1,2
刊名COMPUTATIONAL STATISTICS & DATA ANALYSIS
出版日期2008-01-20
卷号52期号:5页码:2538-2548
关键词AIC BIC Kullback-Leibler information survival analysis
ISSN号0167-9473
DOI10.1016/j.csda.2007.09.003
英文摘要In survival analysis, it is of interest to appropriately select significant predictors. In this paper, we extend the AIC(C) selection procedure of Hurvich and Tsai to survival models to improve the traditional AIC for small sample sizes. A theoretical verification under a special case of the exponential distribution is provided. Simulation studies illustrate that the proposed method substantially outperforms its counterpart: AIC, in small samples, and competes it in moderate and large samples. Two real data sets are also analyzed. (c) 2007 Elsevier B.V. All rights reserved.
WOS研究方向Computer Science ; Mathematics
语种英语
WOS记录号WOS:000253178600019
出版者ELSEVIER SCIENCE BV
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/6988]  
专题中国科学院数学与系统科学研究院
通讯作者Liang, Hua
作者单位1.Univ Rochester, Med Ctr, Dept Biostat & Comp Biol, Rochester, NY 14642 USA
2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Liang, Hua,Zou, Guohua. Improved AIC selection strategy for survival analysis[J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS,2008,52(5):2538-2548.
APA Liang, Hua,&Zou, Guohua.(2008).Improved AIC selection strategy for survival analysis.COMPUTATIONAL STATISTICS & DATA ANALYSIS,52(5),2538-2548.
MLA Liang, Hua,et al."Improved AIC selection strategy for survival analysis".COMPUTATIONAL STATISTICS & DATA ANALYSIS 52.5(2008):2538-2548.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。