中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
TWO-DIMENSIONAL RIEMANN PROBLEMS: FROM SCALAR CONSERVATION LAWS TO COMPRESSIBLE EULER EQUATIONS

文献类型:期刊论文

作者Li Jiequan1; Sheng Wancheng2; Zhang Tong3; Zheng Yuxi4
刊名ACTA MATHEMATICA SCIENTIA
出版日期2009-07-01
卷号29期号:4页码:777-802
关键词two-dimensional Riemann problem compressible Euler equation reflection of shocks interaction of rarefaction waves delta-shocks
ISSN号0252-9602
英文摘要In this paper we survey the authors' and related work on two-dimensional Riemann problems for hyperbolic conservation laws, mainly those related to the compressible Euler equations in gas dynamics. It contains four sections: 1. Historical review. 2. Scalar conservation laws. 3. Euler equations. 4. Simplified models.
资助项目973 Key program ; Beijing Educational Commission[KZ200910028002] ; Program for New Century Excellent Talents in University (NCET) ; NSFC[10671120] ; Shanghai Leading Academic Discipline Project[J50101] ; NSF[NSF-DMS-0603859]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000272545200001
出版者ELSEVIER SCIENCE INC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/7224]  
专题中国科学院数学与系统科学研究院
通讯作者Li Jiequan
作者单位1.Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
2.Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
3.Chinese Acad Sci, AMSS, Inst Math, Beijing 100190, Peoples R China
4.Penn State Univ, Dept Math, University Pk, PA 16802 USA
推荐引用方式
GB/T 7714
Li Jiequan,Sheng Wancheng,Zhang Tong,et al. TWO-DIMENSIONAL RIEMANN PROBLEMS: FROM SCALAR CONSERVATION LAWS TO COMPRESSIBLE EULER EQUATIONS[J]. ACTA MATHEMATICA SCIENTIA,2009,29(4):777-802.
APA Li Jiequan,Sheng Wancheng,Zhang Tong,&Zheng Yuxi.(2009).TWO-DIMENSIONAL RIEMANN PROBLEMS: FROM SCALAR CONSERVATION LAWS TO COMPRESSIBLE EULER EQUATIONS.ACTA MATHEMATICA SCIENTIA,29(4),777-802.
MLA Li Jiequan,et al."TWO-DIMENSIONAL RIEMANN PROBLEMS: FROM SCALAR CONSERVATION LAWS TO COMPRESSIBLE EULER EQUATIONS".ACTA MATHEMATICA SCIENTIA 29.4(2009):777-802.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。