Credit scoring using support vector machines with direct search for parameters selection
文献类型:期刊论文
作者 | Zhou, Ligang1; Lai, Kin Keung1; Yu, Lean1,2 |
刊名 | SOFT COMPUTING
![]() |
出版日期 | 2009 |
卷号 | 13期号:2页码:149-155 |
关键词 | Credit scoring Direct search Support vector machines Genetic algorithm |
ISSN号 | 1432-7643 |
DOI | 10.1007/s00500-008-0305-0 |
英文摘要 | Support vector machines (SVM) is an effective tool for building good credit scoring models. However, the performance of the model depends on its parameters' setting. In this study, we use direct search method to optimize the SVM-based credit scoring model and compare it with other three parameters optimization methods, such as grid search, method based on design of experiment (DOE) and genetic algorithm (GA). Two real-world credit datasets are selected to demonstrate the effectiveness and feasibility of the method. The results show that the direct search method can find the effective model with high classification accuracy and good robustness and keep less dependency on the initial search space or point setting. |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000260518100007 |
出版者 | SPRINGER |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/7969] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Lai, Kin Keung |
作者单位 | 1.City Univ Hong Kong, Dept Management Sci, Kowloon, Hong Kong, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Zhou, Ligang,Lai, Kin Keung,Yu, Lean. Credit scoring using support vector machines with direct search for parameters selection[J]. SOFT COMPUTING,2009,13(2):149-155. |
APA | Zhou, Ligang,Lai, Kin Keung,&Yu, Lean.(2009).Credit scoring using support vector machines with direct search for parameters selection.SOFT COMPUTING,13(2),149-155. |
MLA | Zhou, Ligang,et al."Credit scoring using support vector machines with direct search for parameters selection".SOFT COMPUTING 13.2(2009):149-155. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。