中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Global stability of a stage-structured epidemic model with a nonlinear incidence

文献类型:期刊论文

作者Cai, Li-Ming1,2; Li, Xue-Zhi1; Ghosh, Mini3
刊名APPLIED MATHEMATICS AND COMPUTATION
出版日期2009-08-01
卷号214期号:1页码:73-82
关键词Epidemic model Stage structure Global stability
ISSN号0096-3003
DOI10.1016/j.amc.2009.03.088
英文摘要In this paper, a stage-structured epidemic model with a nonlinear incidence with a factor S(p) is investigated. By using limit theory of differential equations and Theorem of Busenberg and van den Driessche, global dynamics of the model is rigorously established. We prove that if the basic reproduction number R(0) is less than one, the disease-free equilibrium is globally asymptotically stable and the disease dies out; if R(0) is greater than one, then the disease persists and the unique endemic equilibrium is globally asymptotically stable. Numerical simulations support our analytical results and illustrate the effect of p on the dynamic behavior of the model. (C) 2009 Elsevier Inc. All rights reserved.
资助项目National Natural Science Foundation of China[10671166]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000267585200011
出版者ELSEVIER SCIENCE INC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/8244]  
专题中国科学院数学与系统科学研究院
通讯作者Cai, Li-Ming
作者单位1.Xinyang Normal Univ, Dept Math, Xinyang 464000, Peoples R China
2.Acad Sinica, Acad Math & Syst Sci, Beijing 100080, Peoples R China
3.Thapar Univ, Sch Math & Comp Applicat, Patiala 147004, Punjab, India
推荐引用方式
GB/T 7714
Cai, Li-Ming,Li, Xue-Zhi,Ghosh, Mini. Global stability of a stage-structured epidemic model with a nonlinear incidence[J]. APPLIED MATHEMATICS AND COMPUTATION,2009,214(1):73-82.
APA Cai, Li-Ming,Li, Xue-Zhi,&Ghosh, Mini.(2009).Global stability of a stage-structured epidemic model with a nonlinear incidence.APPLIED MATHEMATICS AND COMPUTATION,214(1),73-82.
MLA Cai, Li-Ming,et al."Global stability of a stage-structured epidemic model with a nonlinear incidence".APPLIED MATHEMATICS AND COMPUTATION 214.1(2009):73-82.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。