Global stability of a stage-structured epidemic model with a nonlinear incidence
文献类型:期刊论文
作者 | Cai, Li-Ming1,2; Li, Xue-Zhi1; Ghosh, Mini3 |
刊名 | APPLIED MATHEMATICS AND COMPUTATION
![]() |
出版日期 | 2009-08-01 |
卷号 | 214期号:1页码:73-82 |
关键词 | Epidemic model Stage structure Global stability |
ISSN号 | 0096-3003 |
DOI | 10.1016/j.amc.2009.03.088 |
英文摘要 | In this paper, a stage-structured epidemic model with a nonlinear incidence with a factor S(p) is investigated. By using limit theory of differential equations and Theorem of Busenberg and van den Driessche, global dynamics of the model is rigorously established. We prove that if the basic reproduction number R(0) is less than one, the disease-free equilibrium is globally asymptotically stable and the disease dies out; if R(0) is greater than one, then the disease persists and the unique endemic equilibrium is globally asymptotically stable. Numerical simulations support our analytical results and illustrate the effect of p on the dynamic behavior of the model. (C) 2009 Elsevier Inc. All rights reserved. |
资助项目 | National Natural Science Foundation of China[10671166] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000267585200011 |
出版者 | ELSEVIER SCIENCE INC |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/8244] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Cai, Li-Ming |
作者单位 | 1.Xinyang Normal Univ, Dept Math, Xinyang 464000, Peoples R China 2.Acad Sinica, Acad Math & Syst Sci, Beijing 100080, Peoples R China 3.Thapar Univ, Sch Math & Comp Applicat, Patiala 147004, Punjab, India |
推荐引用方式 GB/T 7714 | Cai, Li-Ming,Li, Xue-Zhi,Ghosh, Mini. Global stability of a stage-structured epidemic model with a nonlinear incidence[J]. APPLIED MATHEMATICS AND COMPUTATION,2009,214(1):73-82. |
APA | Cai, Li-Ming,Li, Xue-Zhi,&Ghosh, Mini.(2009).Global stability of a stage-structured epidemic model with a nonlinear incidence.APPLIED MATHEMATICS AND COMPUTATION,214(1),73-82. |
MLA | Cai, Li-Ming,et al."Global stability of a stage-structured epidemic model with a nonlinear incidence".APPLIED MATHEMATICS AND COMPUTATION 214.1(2009):73-82. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。