ON THE CONVERGENCE OF CIRCLE PACKINGS TO THE QUASICONFORMAL MAP
文献类型:期刊论文
| 作者 | Huang Xiaojun1; Shen Liang2 |
| 刊名 | ACTA MATHEMATICA SCIENTIA
![]() |
| 出版日期 | 2009-09-01 |
| 卷号 | 29期号:5页码:1173-1181 |
| 关键词 | circle packing quasiconformal map complex dilation |
| ISSN号 | 0252-9602 |
| 英文摘要 | Rodin and Sullivan (1987) proved Thurston's conjecture that a scheme based on the Circle Packing Theorem converges to the Riemann mapping, thereby proved a refreshing geometric view of the Riemann Mapping Theorem. Naturally, we consider to use the ellipses to pack the bounded simply connected domain and obtain similarly a sequence simplicial homeomorphism between the ellipse packing and the circle packing. In this paper, we prove that these simplicial homeomorphism approximate a quasiconformal mapping from the bounded simply connected domain onto the unit disk with the modulus of their complex dilatations tending to 1 almost everywhere in the domain when the ratio of the longer axis and shorter axis of the ellipse tending to infinity. |
| 资助项目 | National Natural Science Foundation of China[10701084] ; Chongqing Natural Science Foundation[2008BB0151] |
| WOS研究方向 | Mathematics |
| 语种 | 英语 |
| WOS记录号 | WOS:000270313100006 |
| 出版者 | ELSEVIER SCIENCE INC |
| 源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/8707] ![]() |
| 专题 | 中国科学院数学与系统科学研究院 |
| 通讯作者 | Huang Xiaojun |
| 作者单位 | 1.Chongqing Univ, Coll Math & Phys, Chongqing 400044, Peoples R China 2.Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China |
| 推荐引用方式 GB/T 7714 | Huang Xiaojun,Shen Liang. ON THE CONVERGENCE OF CIRCLE PACKINGS TO THE QUASICONFORMAL MAP[J]. ACTA MATHEMATICA SCIENTIA,2009,29(5):1173-1181. |
| APA | Huang Xiaojun,&Shen Liang.(2009).ON THE CONVERGENCE OF CIRCLE PACKINGS TO THE QUASICONFORMAL MAP.ACTA MATHEMATICA SCIENTIA,29(5),1173-1181. |
| MLA | Huang Xiaojun,et al."ON THE CONVERGENCE OF CIRCLE PACKINGS TO THE QUASICONFORMAL MAP".ACTA MATHEMATICA SCIENTIA 29.5(2009):1173-1181. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

