中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
CHARACTERIZATION OF MINIMAL-MASS BLOWUP SOLUTIONS TO THE FOCUSING MASS-CRITICAL NLS

文献类型:期刊论文

作者Killip, Rowan1,2; Li, Dong2; Visan, Monica2; Zhang, Xiaoyi2,3
刊名SIAM JOURNAL ON MATHEMATICAL ANALYSIS
出版日期2009
卷号41期号:1页码:219-236
关键词characterization blowup solutions focusing NLS
ISSN号0036-1410
DOI10.1137/080720358
英文摘要Let d >= 4 and let u be a global solution to the focusing mass-critical nonlinear Schrodinger equation iu(t) + Delta u = -vertical bar u vertical bar(4/d) u with spherically symmetric H(x)(1) initial data and mass equal to that of the ground state Q. We prove that if u does not scatter, then, up to phase rotation and scaling, u is the solitary wave e(it)Q. Combining this result with that of Merle [Duke Math. J., 69 (1993), pp. 427 - 453], we obtain that in dimensions d >= 4, the only spherically symmetric minimal-mass nonscattering solutions are, up to phase rotation and scaling, the pseudoconformal ground state and the ground state solitary wave.
资助项目National Science Foundation[DMS-0635607]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000266019600009
出版者SIAM PUBLICATIONS
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/8913]  
专题中国科学院数学与系统科学研究院
通讯作者Killip, Rowan
作者单位1.Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
2.Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
3.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Killip, Rowan,Li, Dong,Visan, Monica,et al. CHARACTERIZATION OF MINIMAL-MASS BLOWUP SOLUTIONS TO THE FOCUSING MASS-CRITICAL NLS[J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS,2009,41(1):219-236.
APA Killip, Rowan,Li, Dong,Visan, Monica,&Zhang, Xiaoyi.(2009).CHARACTERIZATION OF MINIMAL-MASS BLOWUP SOLUTIONS TO THE FOCUSING MASS-CRITICAL NLS.SIAM JOURNAL ON MATHEMATICAL ANALYSIS,41(1),219-236.
MLA Killip, Rowan,et al."CHARACTERIZATION OF MINIMAL-MASS BLOWUP SOLUTIONS TO THE FOCUSING MASS-CRITICAL NLS".SIAM JOURNAL ON MATHEMATICAL ANALYSIS 41.1(2009):219-236.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。