中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
On the dependence structure of wavelet coefficients for spherical random fields

文献类型:期刊论文

作者Lan, Xiaohong1,2; Marinucci, Domenico1
刊名STOCHASTIC PROCESSES AND THEIR APPLICATIONS
出版日期2009-10-01
卷号119期号:10页码:3749-3766
关键词Spherical random fields Wavelets Mexican needlets High frequency asymptotics Cosmic microwave background radiation
ISSN号0304-4149
DOI10.1016/j.spa.2009.07.005
英文摘要We consider the correlation structure of the random coefficients for a class of wavelet systems on the sphere (labelled Mexican needlets) which was recently introduced in the literature by [D. Geller, A. Mayeli, Nearly tight frames and space-frequency analysis on compact manifolds, Preprint, 2007. arxiv:0706.3642v2]. We provide necessary and sufficient conditions for these coefficients to be asymptotically uncorrelated in the real and in the frequency domain. Here, the asymptotic theory is developed in the high frequency sense. Statistical applications are also discussed, in particular with reference to the analysis of cosmological data. (C) 2009 Elsevier B.V. All rights reserved.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000270637500029
出版者ELSEVIER SCIENCE BV
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/9031]  
专题中国科学院数学与系统科学研究院
通讯作者Marinucci, Domenico
作者单位1.Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
2.Chinese Acad Sci, Inst Math, Beijing 100864, Peoples R China
推荐引用方式
GB/T 7714
Lan, Xiaohong,Marinucci, Domenico. On the dependence structure of wavelet coefficients for spherical random fields[J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS,2009,119(10):3749-3766.
APA Lan, Xiaohong,&Marinucci, Domenico.(2009).On the dependence structure of wavelet coefficients for spherical random fields.STOCHASTIC PROCESSES AND THEIR APPLICATIONS,119(10),3749-3766.
MLA Lan, Xiaohong,et al."On the dependence structure of wavelet coefficients for spherical random fields".STOCHASTIC PROCESSES AND THEIR APPLICATIONS 119.10(2009):3749-3766.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。