中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
ANALYSIS OF A PREDATOR-PREY MODEL WITH PREDATORS IMPULSIVELY DIFFUSING BETWEEN TWO PATCHES

文献类型:期刊论文

作者Jiao, Jianjun1; Chen, Lansun2
刊名DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B
出版日期2010-10-01
卷号14期号:3页码:1081-1094
关键词Predator-prey model Impulsive diffusion Extinction Permanence
ISSN号1531-3492
DOI10.3934/dcdsb.2010.14.1081
英文摘要In this work, a predator-prey model with predators impulsively diffusing between two patches is investigated. By the stroboscopic map of the discrete dynamical system, the prey-extinction periodic solution of the investigated system is proved to be globally asymptotically stable. By the theory of impulsive differential equation, the investigated system is also proved to be permanent. Finally, the numerical simulation is inserted to illustrate the results.
资助项目National Natural Science Foundation of China[10961008] ; Nomarch Foundation of Guizhou Province[2008035] ; Science Technology Foundation of Guizhou[2010J2130]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000280382700011
出版者AMER INST MATHEMATICAL SCIENCES
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/10101]  
专题中国科学院数学与系统科学研究院
通讯作者Jiao, Jianjun
作者单位1.Guizhou Coll Finance & Econ, Guizhou Key Lab Econ Syst Simulat, Sch Math & Stat, Guiyang 550004, Peoples R China
2.Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Jiao, Jianjun,Chen, Lansun. ANALYSIS OF A PREDATOR-PREY MODEL WITH PREDATORS IMPULSIVELY DIFFUSING BETWEEN TWO PATCHES[J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B,2010,14(3):1081-1094.
APA Jiao, Jianjun,&Chen, Lansun.(2010).ANALYSIS OF A PREDATOR-PREY MODEL WITH PREDATORS IMPULSIVELY DIFFUSING BETWEEN TWO PATCHES.DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B,14(3),1081-1094.
MLA Jiao, Jianjun,et al."ANALYSIS OF A PREDATOR-PREY MODEL WITH PREDATORS IMPULSIVELY DIFFUSING BETWEEN TWO PATCHES".DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B 14.3(2010):1081-1094.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。