中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Poisson kernel and Cauchy formula of a non-symmetric transitive domain

文献类型:期刊论文

作者Lu Qi-Keng
刊名SCIENCE CHINA-MATHEMATICS
出版日期2010-07-01
卷号53期号:7页码:1679-1684
关键词Poisson kernel Cauchy formula
ISSN号1674-7283
DOI10.1007/s11425-010-3125-5
英文摘要In 1965, Lu Yu-Qian discovered that the Poisson kernel of the homogenous domain S(m,p,q) = {Z is an element of C(mxm), Z(1) is an element of C(mxp), Z(2) is an element of C(qxm)|1/2i(Z-Z(dagger))-Z(1)(Z) over bar'(1) - (Z) over bar'(2) > 0} does not satisfy the Laplace-Beltrami equation associated with the Bergman metric when S(m,p,q) is not symmetric. However the map T(0) : Z -> Z, Z(1)-> Z(1), Z(2)-> Z(2) transforms S(m,p,q) into a domain S(I) (m, m+p+q) which can be mapped by the Cayley transformation into the classical domains R(I) (m,m + p + q). The pull back of the Bergman metric of R(I) (m,m + p + q) to S(m,p,q) is a Riemann metric ds(2) which is not a Kahler metric and even not a Hermitian metric in general. It is proved that the Laplace-Beltrami operator Delta associated with the metric ds(2) when it acts on the Poisson kernel of S(m,p,q) equals 0. Consequently, the Cauchy formula of S(m,p,q) can be obtained from the Poisson formula.
语种英语
WOS记录号WOS:000279713200002
出版者SCIENCE PRESS
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/10542]  
专题中国科学院数学与系统科学研究院
通讯作者Lu Qi-Keng
作者单位Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Lu Qi-Keng. Poisson kernel and Cauchy formula of a non-symmetric transitive domain[J]. SCIENCE CHINA-MATHEMATICS,2010,53(7):1679-1684.
APA Lu Qi-Keng.(2010).Poisson kernel and Cauchy formula of a non-symmetric transitive domain.SCIENCE CHINA-MATHEMATICS,53(7),1679-1684.
MLA Lu Qi-Keng."Poisson kernel and Cauchy formula of a non-symmetric transitive domain".SCIENCE CHINA-MATHEMATICS 53.7(2010):1679-1684.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。