中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Some omega-unique and omega-P properties for linear transformations on Hilbert spaces

文献类型:期刊论文

作者Miao, Xin-he1; Huang, Zheng-hai1; Han, Ji-ye2
刊名ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES
出版日期2010
卷号26期号:1页码:23-32
关键词Linear complementarity problem Jordan product Lorentz cone omega-P property column sufficient property omega-uniqueness property
ISSN号0168-9673
DOI10.1007/s10255-008-8810-6
英文摘要Given a real (finite-dimensional or infinite-dimensional) Hilbert space H with a Jordan product, we introduce the concepts of omega-unique and omega-P properties for linear transformations on H, and investigate some interconnections among these concepts. In particular, we discuss the omega-unique and omega-P properties for Lyapunov-like transformations on H. The properties of the Jordan product and the Lorentz cone in the Hilbert space play important roles in our analysis.
资助项目National Natural Science Foundation of China[10871144] ; Natural Science Foundation of Tianjin[07JCYBJC05200]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000272628300003
出版者SPRINGER HEIDELBERG
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/10757]  
专题中国科学院数学与系统科学研究院
通讯作者Huang, Zheng-hai
作者单位1.Tianjin Univ, Sch Sci, Dept Math, Tianjin 300072, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Miao, Xin-he,Huang, Zheng-hai,Han, Ji-ye. Some omega-unique and omega-P properties for linear transformations on Hilbert spaces[J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES,2010,26(1):23-32.
APA Miao, Xin-he,Huang, Zheng-hai,&Han, Ji-ye.(2010).Some omega-unique and omega-P properties for linear transformations on Hilbert spaces.ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES,26(1),23-32.
MLA Miao, Xin-he,et al."Some omega-unique and omega-P properties for linear transformations on Hilbert spaces".ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES 26.1(2010):23-32.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。