Some omega-unique and omega-P properties for linear transformations on Hilbert spaces
文献类型:期刊论文
作者 | Miao, Xin-he1; Huang, Zheng-hai1; Han, Ji-ye2 |
刊名 | ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES
![]() |
出版日期 | 2010 |
卷号 | 26期号:1页码:23-32 |
关键词 | Linear complementarity problem Jordan product Lorentz cone omega-P property column sufficient property omega-uniqueness property |
ISSN号 | 0168-9673 |
DOI | 10.1007/s10255-008-8810-6 |
英文摘要 | Given a real (finite-dimensional or infinite-dimensional) Hilbert space H with a Jordan product, we introduce the concepts of omega-unique and omega-P properties for linear transformations on H, and investigate some interconnections among these concepts. In particular, we discuss the omega-unique and omega-P properties for Lyapunov-like transformations on H. The properties of the Jordan product and the Lorentz cone in the Hilbert space play important roles in our analysis. |
资助项目 | National Natural Science Foundation of China[10871144] ; Natural Science Foundation of Tianjin[07JCYBJC05200] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000272628300003 |
出版者 | SPRINGER HEIDELBERG |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/10757] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Huang, Zheng-hai |
作者单位 | 1.Tianjin Univ, Sch Sci, Dept Math, Tianjin 300072, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Miao, Xin-he,Huang, Zheng-hai,Han, Ji-ye. Some omega-unique and omega-P properties for linear transformations on Hilbert spaces[J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES,2010,26(1):23-32. |
APA | Miao, Xin-he,Huang, Zheng-hai,&Han, Ji-ye.(2010).Some omega-unique and omega-P properties for linear transformations on Hilbert spaces.ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES,26(1),23-32. |
MLA | Miao, Xin-he,et al."Some omega-unique and omega-P properties for linear transformations on Hilbert spaces".ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES 26.1(2010):23-32. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。