中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Roman domination in a tree

文献类型:期刊论文

作者Song, Xiaoxin1,2; Shang, Weiping3
刊名ARS COMBINATORIA
出版日期2011
卷号98页码:73-82
关键词Roman dominating function Roman domination number Domination number healthy spider wounded spider
ISSN号0381-7032
英文摘要A Roman dominating function on a graph G = (V, E) is a function f : V -> {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V) = Sigma(u is an element of V) f (u). The minimum weight of a Roman dominating function on a graph G, denoted by gamma R(G), is called the Roman domination number of G. In [E.J. Cockayne, P.A. Dreyer, Jr., S.M. Hedetniemi, S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278(2004) 11-22.], the authors stated a proposition which characterized trees which satisfy gamma R(T) = gamma(T) + 2, where gamma(T) is the domination number of T. The authors thought the proof of the proposition was rather technical and chose to omit it's proof, however, the proposition is actually incorrect. In this paper, we will give a counterexample of this proposition and introduce the correct characterization of a tree T with gamma R(T) = gamma(T) + 2.
资助项目N.S.F. of education Department of Henan Province[200510475038]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000286533200007
出版者CHARLES BABBAGE RES CTR
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/13144]  
专题中国科学院数学与系统科学研究院
通讯作者Song, Xiaoxin
作者单位1.Henan Univ, Coll Math & Informat Sci, Kaifeng 475001, Peoples R China
2.Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
3.Chinese Acad Sci, Inst Appl Maths, Acad Maths & Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Song, Xiaoxin,Shang, Weiping. Roman domination in a tree[J]. ARS COMBINATORIA,2011,98:73-82.
APA Song, Xiaoxin,&Shang, Weiping.(2011).Roman domination in a tree.ARS COMBINATORIA,98,73-82.
MLA Song, Xiaoxin,et al."Roman domination in a tree".ARS COMBINATORIA 98(2011):73-82.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。