Substructure preconditioners for nonconforming plate elements
文献类型:期刊论文
作者 | Shi, ZC; Xie, ZH |
刊名 | JOURNAL OF COMPUTATIONAL MATHEMATICS
![]() |
出版日期 | 1998-07-01 |
卷号 | 16期号:4页码:289-304 |
关键词 | substructure preconditioner biharmonic equation nonconforming plate element |
ISSN号 | 0254-9409 |
英文摘要 | In this paper, we consider the problem of solving finite element equations of biharmonic Dirichlet problems. We divide the given domain into non-overlapping subdomains, construct a preconditioner for Morley element by substructuring on the basis of a function decomposition for discrete biharmonic functions. The function decomposition is introduced by partitioning these finite element functions into the low and high frequency components through the intergrid transfer operators between coarse mesh and fine mesh, and the conforming interpolation operators. The method leads to a preconditioned system with the condition number bounded by C(1 + log(2) H/h) in the case with interior cross points, and by C in the case without interior cross points, where H is the subdomain size and h is the mesh size. These techniques are applicable to other nonconforming elements and are well suited to a parallel computation. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000075469400001 |
出版者 | VSP BV |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/13454] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
作者单位 | 1.Chinese Acad Sci, ICMSEC, State Key Lab Sci & Engn Comp, Beijing 100080, Peoples R China 2.Chinese Acad Sci, Inst Atmospher Phys, LASG, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Shi, ZC,Xie, ZH. Substructure preconditioners for nonconforming plate elements[J]. JOURNAL OF COMPUTATIONAL MATHEMATICS,1998,16(4):289-304. |
APA | Shi, ZC,&Xie, ZH.(1998).Substructure preconditioners for nonconforming plate elements.JOURNAL OF COMPUTATIONAL MATHEMATICS,16(4),289-304. |
MLA | Shi, ZC,et al."Substructure preconditioners for nonconforming plate elements".JOURNAL OF COMPUTATIONAL MATHEMATICS 16.4(1998):289-304. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。